Cargando…
Efficient control of the fungal pathogens Colletotrichum gloeosporioides and Penicillium digitatum infecting citrus fruits by native soilborne Bacillus velezensis strains
Destruction of citrus fruits by fungal pathogens during preharvest and postharvest stages can result in severe losses for the citrus industry. Antagonistic microorganisms used as biological agents to control citrus pathogens are considered alternatives to synthetic fungicides. In this study, we aime...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9958435/ https://www.ncbi.nlm.nih.gov/pubmed/36852059 http://dx.doi.org/10.1016/j.heliyon.2023.e13663 |
_version_ | 1784895023863562240 |
---|---|
author | Vu, Tao Xuan Tran, Tram Bao Tran, Minh Binh Do, Trang Thi Kim Do, Linh Mai Dinh, Mui Thi Thai, Hanh-Dung Pham, Duc-Ngoc Tran, Van-Tuan |
author_facet | Vu, Tao Xuan Tran, Tram Bao Tran, Minh Binh Do, Trang Thi Kim Do, Linh Mai Dinh, Mui Thi Thai, Hanh-Dung Pham, Duc-Ngoc Tran, Van-Tuan |
author_sort | Vu, Tao Xuan |
collection | PubMed |
description | Destruction of citrus fruits by fungal pathogens during preharvest and postharvest stages can result in severe losses for the citrus industry. Antagonistic microorganisms used as biological agents to control citrus pathogens are considered alternatives to synthetic fungicides. In this study, we aimed to identify fungal pathogens causing dominant diseases on citrus fruits in a specialized citrus cultivation region of Vietnam and inspect soilborne Bacillus isolates with antifungal activity against these pathogens. Two fungal pathogens were characterized as Colletotrichum gloeosporioides and Penicillium digitatum based on morphological characteristics and ribosomal DNA internal transcribed spacer sequence analyses. Reinfection assays of orange fruits confirmed that C. gloeosporioides causes stem-end rot, and P. digitatum triggers green mold disease. By the heterologous expression of the green fluorescent protein (GFP) in C. gloeosporioides using Agrobacterium tumefaciens-mediated transformation, we could observe the fungal infection process of the citrus fruit stem-end rot caused by C. gloeosporioides for the first time. Furthermore, we isolated and selected two soilborne Bacillus strains with strong antagonistic activity for preventing the decay of citrus fruits by these pathogens. Molecular analyses of 16 S rRNA and gyrB genes showed that both isolates belong to B. velezensis. Antifungal activity assays indicated that bacterial culture suspensions could strongly inhibit C. gloeosporioides and P. digitatum, and shield orange fruits from the invasion of the pathogens. Our work provides a highly effective Bacillus-based preservative solution for combating the fungal pathogens C. gloeosporioides and P. digitatum to protect citrus fruits at the postharvest stages. |
format | Online Article Text |
id | pubmed-9958435 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-99584352023-02-26 Efficient control of the fungal pathogens Colletotrichum gloeosporioides and Penicillium digitatum infecting citrus fruits by native soilborne Bacillus velezensis strains Vu, Tao Xuan Tran, Tram Bao Tran, Minh Binh Do, Trang Thi Kim Do, Linh Mai Dinh, Mui Thi Thai, Hanh-Dung Pham, Duc-Ngoc Tran, Van-Tuan Heliyon Research Article Destruction of citrus fruits by fungal pathogens during preharvest and postharvest stages can result in severe losses for the citrus industry. Antagonistic microorganisms used as biological agents to control citrus pathogens are considered alternatives to synthetic fungicides. In this study, we aimed to identify fungal pathogens causing dominant diseases on citrus fruits in a specialized citrus cultivation region of Vietnam and inspect soilborne Bacillus isolates with antifungal activity against these pathogens. Two fungal pathogens were characterized as Colletotrichum gloeosporioides and Penicillium digitatum based on morphological characteristics and ribosomal DNA internal transcribed spacer sequence analyses. Reinfection assays of orange fruits confirmed that C. gloeosporioides causes stem-end rot, and P. digitatum triggers green mold disease. By the heterologous expression of the green fluorescent protein (GFP) in C. gloeosporioides using Agrobacterium tumefaciens-mediated transformation, we could observe the fungal infection process of the citrus fruit stem-end rot caused by C. gloeosporioides for the first time. Furthermore, we isolated and selected two soilborne Bacillus strains with strong antagonistic activity for preventing the decay of citrus fruits by these pathogens. Molecular analyses of 16 S rRNA and gyrB genes showed that both isolates belong to B. velezensis. Antifungal activity assays indicated that bacterial culture suspensions could strongly inhibit C. gloeosporioides and P. digitatum, and shield orange fruits from the invasion of the pathogens. Our work provides a highly effective Bacillus-based preservative solution for combating the fungal pathogens C. gloeosporioides and P. digitatum to protect citrus fruits at the postharvest stages. Elsevier 2023-02-10 /pmc/articles/PMC9958435/ /pubmed/36852059 http://dx.doi.org/10.1016/j.heliyon.2023.e13663 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Vu, Tao Xuan Tran, Tram Bao Tran, Minh Binh Do, Trang Thi Kim Do, Linh Mai Dinh, Mui Thi Thai, Hanh-Dung Pham, Duc-Ngoc Tran, Van-Tuan Efficient control of the fungal pathogens Colletotrichum gloeosporioides and Penicillium digitatum infecting citrus fruits by native soilborne Bacillus velezensis strains |
title | Efficient control of the fungal pathogens Colletotrichum gloeosporioides and Penicillium digitatum infecting citrus fruits by native soilborne Bacillus velezensis strains |
title_full | Efficient control of the fungal pathogens Colletotrichum gloeosporioides and Penicillium digitatum infecting citrus fruits by native soilborne Bacillus velezensis strains |
title_fullStr | Efficient control of the fungal pathogens Colletotrichum gloeosporioides and Penicillium digitatum infecting citrus fruits by native soilborne Bacillus velezensis strains |
title_full_unstemmed | Efficient control of the fungal pathogens Colletotrichum gloeosporioides and Penicillium digitatum infecting citrus fruits by native soilborne Bacillus velezensis strains |
title_short | Efficient control of the fungal pathogens Colletotrichum gloeosporioides and Penicillium digitatum infecting citrus fruits by native soilborne Bacillus velezensis strains |
title_sort | efficient control of the fungal pathogens colletotrichum gloeosporioides and penicillium digitatum infecting citrus fruits by native soilborne bacillus velezensis strains |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9958435/ https://www.ncbi.nlm.nih.gov/pubmed/36852059 http://dx.doi.org/10.1016/j.heliyon.2023.e13663 |
work_keys_str_mv | AT vutaoxuan efficientcontrolofthefungalpathogenscolletotrichumgloeosporioidesandpenicilliumdigitatuminfectingcitrusfruitsbynativesoilbornebacillusvelezensisstrains AT trantrambao efficientcontrolofthefungalpathogenscolletotrichumgloeosporioidesandpenicilliumdigitatuminfectingcitrusfruitsbynativesoilbornebacillusvelezensisstrains AT tranminhbinh efficientcontrolofthefungalpathogenscolletotrichumgloeosporioidesandpenicilliumdigitatuminfectingcitrusfruitsbynativesoilbornebacillusvelezensisstrains AT dotrangthikim efficientcontrolofthefungalpathogenscolletotrichumgloeosporioidesandpenicilliumdigitatuminfectingcitrusfruitsbynativesoilbornebacillusvelezensisstrains AT dolinhmai efficientcontrolofthefungalpathogenscolletotrichumgloeosporioidesandpenicilliumdigitatuminfectingcitrusfruitsbynativesoilbornebacillusvelezensisstrains AT dinhmuithi efficientcontrolofthefungalpathogenscolletotrichumgloeosporioidesandpenicilliumdigitatuminfectingcitrusfruitsbynativesoilbornebacillusvelezensisstrains AT thaihanhdung efficientcontrolofthefungalpathogenscolletotrichumgloeosporioidesandpenicilliumdigitatuminfectingcitrusfruitsbynativesoilbornebacillusvelezensisstrains AT phamducngoc efficientcontrolofthefungalpathogenscolletotrichumgloeosporioidesandpenicilliumdigitatuminfectingcitrusfruitsbynativesoilbornebacillusvelezensisstrains AT tranvantuan efficientcontrolofthefungalpathogenscolletotrichumgloeosporioidesandpenicilliumdigitatuminfectingcitrusfruitsbynativesoilbornebacillusvelezensisstrains |