Cargando…
AUTO-HAR: An adaptive human activity recognition framework using an automated CNN architecture design
Convolutional neural networks (CNNs) have demonstrated exceptional results in the analysis of time- series data when used for Human Activity Recognition (HAR). The manual design of such neural architectures is an error-prone and time-consuming process. The search for optimal CNN architectures is con...
Autores principales: | Ismail, Walaa N., Alsalamah, Hessah A., Hassan, Mohammad Mehedi, Mohamed, Ebtesam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9958436/ https://www.ncbi.nlm.nih.gov/pubmed/36852018 http://dx.doi.org/10.1016/j.heliyon.2023.e13636 |
Ejemplares similares
-
A framework of genetic algorithm-based CNN on multi-access edge computing for automated detection of COVID-19
por: Hassan, Md Rafiul, et al.
Publicado: (2022) -
Correction to: A framework of genetic algorithm-based CNN on multi-access edge computing for automated detection of COVID-19
por: Hassan, Md Raful, et al.
Publicado: (2023) -
CNN Architectures and Feature Extraction Methods for EEG Imaginary Speech Recognition
por: Rusnac, Ana-Luiza, et al.
Publicado: (2022) -
Matched Filter Interpretation of CNN Classifiers with Application to HAR
por: Farag, Mohammed M.
Publicado: (2022) -
CNN supported automated recognition of Covid-19 infection in chest X-ray images
por: Padmakala, S., et al.
Publicado: (2022)