Cargando…

Fast-screening flow cytometry method for detecting nanoplastics in human peripheral blood

Plastic pollution is a global problem. Animals and humans can ingest and inhale plastic particles, with uncertain health consequences. Nanoplastics (NPs) are particles ranging from 1 nm to 1000 nm that result from the erosion or breakage of larger plastic debris, and can be highly polydisperse in ph...

Descripción completa

Detalles Bibliográficos
Autores principales: Salvia, Roser, Rico, Laura G., Bradford, Jolene A., Ward, Michael D., Olszowy, Michael W., Martínez, Cristina, Madrid-Aris, Álvaro Domingo, Grífols, Joan R., Ancochea, Águeda, Gomez-Muñoz, Laia, Vives-Pi, Marta, Martínez-Cáceres, Eva, Fernández, Marco A., Sorigue, Marc, Petriz, Jordi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9958479/
https://www.ncbi.nlm.nih.gov/pubmed/36851978
http://dx.doi.org/10.1016/j.mex.2023.102057
_version_ 1784895034706886656
author Salvia, Roser
Rico, Laura G.
Bradford, Jolene A.
Ward, Michael D.
Olszowy, Michael W.
Martínez, Cristina
Madrid-Aris, Álvaro Domingo
Grífols, Joan R.
Ancochea, Águeda
Gomez-Muñoz, Laia
Vives-Pi, Marta
Martínez-Cáceres, Eva
Fernández, Marco A.
Sorigue, Marc
Petriz, Jordi
author_facet Salvia, Roser
Rico, Laura G.
Bradford, Jolene A.
Ward, Michael D.
Olszowy, Michael W.
Martínez, Cristina
Madrid-Aris, Álvaro Domingo
Grífols, Joan R.
Ancochea, Águeda
Gomez-Muñoz, Laia
Vives-Pi, Marta
Martínez-Cáceres, Eva
Fernández, Marco A.
Sorigue, Marc
Petriz, Jordi
author_sort Salvia, Roser
collection PubMed
description Plastic pollution is a global problem. Animals and humans can ingest and inhale plastic particles, with uncertain health consequences. Nanoplastics (NPs) are particles ranging from 1 nm to 1000 nm that result from the erosion or breakage of larger plastic debris, and can be highly polydisperse in physical properties and heterogeneous in composition. Potential effects of NPs exposure may be associated with alterations in the xenobiotic metabolism, nutrients absorption, energy metabolism, cytotoxicity, and behavior. In humans, no data on NPs absorptions has been reported previously. Given that their detection relies significantly on environmental exposure, we have prospectively studied the presence of NPs in human peripheral blood (PB). Specifically, we have used fluorescence techniques and nanocytometry, together with the staining of the lipophilic dye Nile Red (NR), to demonstrate that NPs can be accurately detected using flow cytometry. • Potential effects of nanoplastics exposure. • Fluorescence techniques and nanocytometry. • Accurate detection using flow cytometry.
format Online
Article
Text
id pubmed-9958479
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-99584792023-02-26 Fast-screening flow cytometry method for detecting nanoplastics in human peripheral blood Salvia, Roser Rico, Laura G. Bradford, Jolene A. Ward, Michael D. Olszowy, Michael W. Martínez, Cristina Madrid-Aris, Álvaro Domingo Grífols, Joan R. Ancochea, Águeda Gomez-Muñoz, Laia Vives-Pi, Marta Martínez-Cáceres, Eva Fernández, Marco A. Sorigue, Marc Petriz, Jordi MethodsX Method Article Plastic pollution is a global problem. Animals and humans can ingest and inhale plastic particles, with uncertain health consequences. Nanoplastics (NPs) are particles ranging from 1 nm to 1000 nm that result from the erosion or breakage of larger plastic debris, and can be highly polydisperse in physical properties and heterogeneous in composition. Potential effects of NPs exposure may be associated with alterations in the xenobiotic metabolism, nutrients absorption, energy metabolism, cytotoxicity, and behavior. In humans, no data on NPs absorptions has been reported previously. Given that their detection relies significantly on environmental exposure, we have prospectively studied the presence of NPs in human peripheral blood (PB). Specifically, we have used fluorescence techniques and nanocytometry, together with the staining of the lipophilic dye Nile Red (NR), to demonstrate that NPs can be accurately detected using flow cytometry. • Potential effects of nanoplastics exposure. • Fluorescence techniques and nanocytometry. • Accurate detection using flow cytometry. Elsevier 2023-02-06 /pmc/articles/PMC9958479/ /pubmed/36851978 http://dx.doi.org/10.1016/j.mex.2023.102057 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Method Article
Salvia, Roser
Rico, Laura G.
Bradford, Jolene A.
Ward, Michael D.
Olszowy, Michael W.
Martínez, Cristina
Madrid-Aris, Álvaro Domingo
Grífols, Joan R.
Ancochea, Águeda
Gomez-Muñoz, Laia
Vives-Pi, Marta
Martínez-Cáceres, Eva
Fernández, Marco A.
Sorigue, Marc
Petriz, Jordi
Fast-screening flow cytometry method for detecting nanoplastics in human peripheral blood
title Fast-screening flow cytometry method for detecting nanoplastics in human peripheral blood
title_full Fast-screening flow cytometry method for detecting nanoplastics in human peripheral blood
title_fullStr Fast-screening flow cytometry method for detecting nanoplastics in human peripheral blood
title_full_unstemmed Fast-screening flow cytometry method for detecting nanoplastics in human peripheral blood
title_short Fast-screening flow cytometry method for detecting nanoplastics in human peripheral blood
title_sort fast-screening flow cytometry method for detecting nanoplastics in human peripheral blood
topic Method Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9958479/
https://www.ncbi.nlm.nih.gov/pubmed/36851978
http://dx.doi.org/10.1016/j.mex.2023.102057
work_keys_str_mv AT salviaroser fastscreeningflowcytometrymethodfordetectingnanoplasticsinhumanperipheralblood
AT ricolaurag fastscreeningflowcytometrymethodfordetectingnanoplasticsinhumanperipheralblood
AT bradfordjolenea fastscreeningflowcytometrymethodfordetectingnanoplasticsinhumanperipheralblood
AT wardmichaeld fastscreeningflowcytometrymethodfordetectingnanoplasticsinhumanperipheralblood
AT olszowymichaelw fastscreeningflowcytometrymethodfordetectingnanoplasticsinhumanperipheralblood
AT martinezcristina fastscreeningflowcytometrymethodfordetectingnanoplasticsinhumanperipheralblood
AT madridarisalvarodomingo fastscreeningflowcytometrymethodfordetectingnanoplasticsinhumanperipheralblood
AT grifolsjoanr fastscreeningflowcytometrymethodfordetectingnanoplasticsinhumanperipheralblood
AT ancocheaagueda fastscreeningflowcytometrymethodfordetectingnanoplasticsinhumanperipheralblood
AT gomezmunozlaia fastscreeningflowcytometrymethodfordetectingnanoplasticsinhumanperipheralblood
AT vivespimarta fastscreeningflowcytometrymethodfordetectingnanoplasticsinhumanperipheralblood
AT martinezcacereseva fastscreeningflowcytometrymethodfordetectingnanoplasticsinhumanperipheralblood
AT fernandezmarcoa fastscreeningflowcytometrymethodfordetectingnanoplasticsinhumanperipheralblood
AT soriguemarc fastscreeningflowcytometrymethodfordetectingnanoplasticsinhumanperipheralblood
AT petrizjordi fastscreeningflowcytometrymethodfordetectingnanoplasticsinhumanperipheralblood