Cargando…

A Novel Strain of Probiotic Leuconostoc citreum Inhibits Infection-Causing Bacterial Pathogens

Infectious diseases caused by bacteria are at risk of spreading and prolonging due to antimicrobial resistance. It is, therefore, urgently necessary to develop a more effective antibiotic alternative strategy to control pathogen spread. In general, probiotics have been recommended as a substitute fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Muthusamy, Karnan, Han, Hyo-Shim, Soundharrajan, Ilavenil, Jung, Jeong-Sung, Valan Arasu, Mariadhas, Choi, Ki-Choon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9958635/
https://www.ncbi.nlm.nih.gov/pubmed/36838434
http://dx.doi.org/10.3390/microorganisms11020469
Descripción
Sumario:Infectious diseases caused by bacteria are at risk of spreading and prolonging due to antimicrobial resistance. It is, therefore, urgently necessary to develop a more effective antibiotic alternative strategy to control pathogen spread. In general, probiotics have been recommended as a substitute for antibiotics that inhibit pathogens. This study was isolated and probiotic characteristics and antibacterial bacterial efficiency against various infection-causing pathogens were determined by different in vitro methods. A 16S rRNA sequence confirmed that the isolated strains belonged to a species of Leuconostoc citreum. L. citreum KCC-57 and KCC-58 produced various extracellular enzymes and fermented different carbohydrates. There was significant tolerance for both strains under the harsh conditions of the gastrointestinal tract (GIT). In addition, L. citreum KCC-57 and L. citreum KCC-58 showed significant auto-aggregations and hydrophobicity properties that varied with incubation time. Moreover, the cell-free secondary supernatant (CFS) of L. citreum KCC-57 and L. citreum KCC-58 inhibited growth of Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. According to a co-culture study, L. citreum KCC-57 and L. citreum KCC-58 were highly competitive for pathogen growth. L. citreum KCC-57 and L. citreum KCC-58 showed significant probiotic potential and strong antibacterial activities against different pathogens, suggesting that these strains could be used instead of antibiotics to control infectious pathogens.