Cargando…

Compact Modeling of Two-Dimensional Field-Effect Biosensors

A compact model able to predict the electrical read-out of field-effect biosensors based on two-dimensional (2D) semiconductors is introduced. It comprises the analytical description of the electrostatics including the charge density in the 2D semiconductor, the site-binding modeling of the barrier...

Descripción completa

Detalles Bibliográficos
Autores principales: Pasadas, Francisco, El Grour, Tarek, G. Marin, Enrique, Medina-Rull, Alberto, Toral-Lopez, Alejandro, Cuesta-Lopez, Juan, G. Ruiz, Francisco, El Mir, Lassaad, Godoy, Andrés
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9958801/
https://www.ncbi.nlm.nih.gov/pubmed/36850440
http://dx.doi.org/10.3390/s23041840
Descripción
Sumario:A compact model able to predict the electrical read-out of field-effect biosensors based on two-dimensional (2D) semiconductors is introduced. It comprises the analytical description of the electrostatics including the charge density in the 2D semiconductor, the site-binding modeling of the barrier oxide surface charge, and the Stern layer plus an ion-permeable membrane, all coupled with the carrier transport inside the biosensor and solved by making use of the Donnan potential inside the ion-permeable membrane formed by charged macromolecules. This electrostatics and transport description account for the main surface-related physical and chemical processes that impact the biosensor electrical performance, including the transport along the low-dimensional channel in the diffusive regime, electrolyte screening, and the impact of biological charges. The model is implemented in Verilog-A and can be employed on standard circuit design tools. The theoretical predictions obtained with the model are validated against measurements of a MoS(2) field-effect biosensor for streptavidin detection showing excellent agreement in all operation regimes and leading the way for the circuit-level simulation of biosensors based on 2D semiconductors.