Cargando…
Reservoir Lithology Identification Based on Multicore Ensemble Learning and Multiclassification Algorithm Based on Noise Detection Function
Reservoir lithology identification is an important part of well logging interpretation. The accuracy of identification affects the subsequent exploration and development work, such as reservoir division and reserve prediction. Correct reservoir lithology identification has important geological signi...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9958803/ https://www.ncbi.nlm.nih.gov/pubmed/36850379 http://dx.doi.org/10.3390/s23041781 |
Sumario: | Reservoir lithology identification is an important part of well logging interpretation. The accuracy of identification affects the subsequent exploration and development work, such as reservoir division and reserve prediction. Correct reservoir lithology identification has important geological significance. In this paper, the wavelet threshold method will be used to preliminarily reduce the noise of the curve, and then the MKBoost-MC model will be used to identify the reservoir lithology. It is found that the prediction accuracy of MKBoost-MC is higher than that of the traditional SVM algorithm, and though the operation of MKBoost-MC takes a long time, the speed of MKBoost-MC reservoir lithology identification is much higher than that of manual processing. The accuracy of MKBoost-MC for reservoir lithology recognition can reach the application standard. For the unbalanced distribution of lithology types, the MKBoost-MC algorithm can be effectively suppressed. Finally, the MKBoost-MC reservoir lithology identification method has good applicability and practicality to the lithology identification problem. |
---|