Cargando…
Semi-Supervised Classification of PolSAR Images Based on Co-Training of CNN and SVM with Limited Labeled Samples
Recently, convolutional neural networks (CNNs) have shown significant advantages in the tasks of image classification; however, these usually require a large number of labeled samples for training. In practice, it is difficult and costly to obtain sufficient labeled samples of polarimetric synthetic...
Autores principales: | Zhao, Mingjun, Cheng, Yinglei, Qin, Xianxiang, Yu, Wangsheng, Wang, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9958805/ https://www.ncbi.nlm.nih.gov/pubmed/36850703 http://dx.doi.org/10.3390/s23042109 |
Ejemplares similares
-
Supervised PolSAR Image Classification with Multiple Features and Locally Linear Embedding
por: Zhang, Qiang, et al.
Publicado: (2018) -
Multi-Pixel Simultaneous Classification of PolSAR Image Using Convolutional Neural Networks
por: Wang, Lei, et al.
Publicado: (2018) -
Gaofen-3 PolSAR Image Classification via XGBoost and Polarimetric Spatial Information
por: Dong, Hao, et al.
Publicado: (2018) -
A Fast Superpixel Segmentation Algorithm for PolSAR Images Based on Edge Refinement and Revised Wishart Distance
por: Zhang, Yue, et al.
Publicado: (2016) -
Self-Trained Deep Forest with Limited Samples for Urban Impervious Surface Area Extraction in Arid Area Using Multispectral and PolSAR Imageries
por: Liu, Ximing, et al.
Publicado: (2022)