Cargando…
Cherenkov Radiation in Optical Fibres as a Versatile Machine Protection System in Particle Accelerators
Machine protection systems in high power particle accelerators are crucial. They can detect, prevent, and respond to events which would otherwise cause damage and significant downtime to accelerator infrastructure. Current systems are often resource heavy and operationally expensive, reacting after...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9958850/ https://www.ncbi.nlm.nih.gov/pubmed/36850845 http://dx.doi.org/10.3390/s23042248 |
_version_ | 1784895127087480832 |
---|---|
author | Wolfenden, Joseph Alexandrova, Alexandra S. Jackson, Frank Mathisen, Storm Morris, Geoffrey Pacey, Thomas H. Kumar, Narender Yadav, Monika Jones, Angus Welsch, Carsten P. |
author_facet | Wolfenden, Joseph Alexandrova, Alexandra S. Jackson, Frank Mathisen, Storm Morris, Geoffrey Pacey, Thomas H. Kumar, Narender Yadav, Monika Jones, Angus Welsch, Carsten P. |
author_sort | Wolfenden, Joseph |
collection | PubMed |
description | Machine protection systems in high power particle accelerators are crucial. They can detect, prevent, and respond to events which would otherwise cause damage and significant downtime to accelerator infrastructure. Current systems are often resource heavy and operationally expensive, reacting after an event has begun to cause damage; this leads to facilities only covering certain operational modes and setting lower limits on machine performance. Presented here is a new type of machine protection system based upon optical fibres, which would be complementary to existing systems, elevating existing performance. These fibres are laid along an accelerator beam line in lengths of ∼100 m, providing continuous coverage over this distance. When relativistic particles pass through these fibres, they generate Cherenkov radiation in the optical spectrum. This radiation propagates in both directions along the fibre and can be detected at both ends. A calibration based technique allows the location of the Cherenkov radiation source to be pinpointed to within 0.5 m with a resolution of 1 m. This measurement mechanism, from a single device, has multiple applications within an accelerator facility. These include beam loss location monitoring, RF breakdown prediction, and quench prevention. Detailed here are the application processes and results from measurements, which provide proof of concept for this device for both beam loss monitoring and RF breakdown detection. Furthermore, highlighted are the current challenges for future innovation. |
format | Online Article Text |
id | pubmed-9958850 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99588502023-02-26 Cherenkov Radiation in Optical Fibres as a Versatile Machine Protection System in Particle Accelerators Wolfenden, Joseph Alexandrova, Alexandra S. Jackson, Frank Mathisen, Storm Morris, Geoffrey Pacey, Thomas H. Kumar, Narender Yadav, Monika Jones, Angus Welsch, Carsten P. Sensors (Basel) Article Machine protection systems in high power particle accelerators are crucial. They can detect, prevent, and respond to events which would otherwise cause damage and significant downtime to accelerator infrastructure. Current systems are often resource heavy and operationally expensive, reacting after an event has begun to cause damage; this leads to facilities only covering certain operational modes and setting lower limits on machine performance. Presented here is a new type of machine protection system based upon optical fibres, which would be complementary to existing systems, elevating existing performance. These fibres are laid along an accelerator beam line in lengths of ∼100 m, providing continuous coverage over this distance. When relativistic particles pass through these fibres, they generate Cherenkov radiation in the optical spectrum. This radiation propagates in both directions along the fibre and can be detected at both ends. A calibration based technique allows the location of the Cherenkov radiation source to be pinpointed to within 0.5 m with a resolution of 1 m. This measurement mechanism, from a single device, has multiple applications within an accelerator facility. These include beam loss location monitoring, RF breakdown prediction, and quench prevention. Detailed here are the application processes and results from measurements, which provide proof of concept for this device for both beam loss monitoring and RF breakdown detection. Furthermore, highlighted are the current challenges for future innovation. MDPI 2023-02-16 /pmc/articles/PMC9958850/ /pubmed/36850845 http://dx.doi.org/10.3390/s23042248 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wolfenden, Joseph Alexandrova, Alexandra S. Jackson, Frank Mathisen, Storm Morris, Geoffrey Pacey, Thomas H. Kumar, Narender Yadav, Monika Jones, Angus Welsch, Carsten P. Cherenkov Radiation in Optical Fibres as a Versatile Machine Protection System in Particle Accelerators |
title | Cherenkov Radiation in Optical Fibres as a Versatile Machine Protection System in Particle Accelerators |
title_full | Cherenkov Radiation in Optical Fibres as a Versatile Machine Protection System in Particle Accelerators |
title_fullStr | Cherenkov Radiation in Optical Fibres as a Versatile Machine Protection System in Particle Accelerators |
title_full_unstemmed | Cherenkov Radiation in Optical Fibres as a Versatile Machine Protection System in Particle Accelerators |
title_short | Cherenkov Radiation in Optical Fibres as a Versatile Machine Protection System in Particle Accelerators |
title_sort | cherenkov radiation in optical fibres as a versatile machine protection system in particle accelerators |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9958850/ https://www.ncbi.nlm.nih.gov/pubmed/36850845 http://dx.doi.org/10.3390/s23042248 |
work_keys_str_mv | AT wolfendenjoseph cherenkovradiationinopticalfibresasaversatilemachineprotectionsysteminparticleaccelerators AT alexandrovaalexandras cherenkovradiationinopticalfibresasaversatilemachineprotectionsysteminparticleaccelerators AT jacksonfrank cherenkovradiationinopticalfibresasaversatilemachineprotectionsysteminparticleaccelerators AT mathisenstorm cherenkovradiationinopticalfibresasaversatilemachineprotectionsysteminparticleaccelerators AT morrisgeoffrey cherenkovradiationinopticalfibresasaversatilemachineprotectionsysteminparticleaccelerators AT paceythomash cherenkovradiationinopticalfibresasaversatilemachineprotectionsysteminparticleaccelerators AT kumarnarender cherenkovradiationinopticalfibresasaversatilemachineprotectionsysteminparticleaccelerators AT yadavmonika cherenkovradiationinopticalfibresasaversatilemachineprotectionsysteminparticleaccelerators AT jonesangus cherenkovradiationinopticalfibresasaversatilemachineprotectionsysteminparticleaccelerators AT welschcarstenp cherenkovradiationinopticalfibresasaversatilemachineprotectionsysteminparticleaccelerators |