Cargando…
Area-Efficient Mapping of Convolutional Neural Networks to Memristor Crossbars Using Sub-Image Partitioning
Memristor crossbars can be very useful for realizing edge-intelligence hardware, because the neural networks implemented by memristor crossbars can save significantly more computing energy and layout area than the conventional CMOS (complementary metal–oxide–semiconductor) digital circuits. One of t...
Autores principales: | Oh, Seokjin, An, Jiyong, Min, Kyeong-Sik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9959389/ https://www.ncbi.nlm.nih.gov/pubmed/36838009 http://dx.doi.org/10.3390/mi14020309 |
Ejemplares similares
-
Synapse-Neuron-Aware Training Scheme of Defect-Tolerant Neural Networks with Defective Memristor Crossbars
por: An, Jiyong, et al.
Publicado: (2022) -
Memristor Crossbar Circuits Implementing Equilibrium Propagation for On-Device Learning
por: Oh, Seokjin, et al.
Publicado: (2023) -
Memristor-CMOS Hybrid Neuron Circuit with Nonideal-Effect Correction Related to Parasitic Resistance for Binary-Memristor-Crossbar Neural Networks
por: Nguyen, Tien Van, et al.
Publicado: (2021) -
Partial-Gated Memristor Crossbar for Fast and Power-Efficient Defect-Tolerant Training
por: Pham, Khoa Van, et al.
Publicado: (2019) -
Asymmetrical Training Scheme of Binary-Memristor-Crossbar-Based Neural Networks for Energy-Efficient Edge-Computing Nanoscale Systems
por: Pham, Khoa Van, et al.
Publicado: (2019)