Cargando…
Experimental Methods for the Biological Evaluation of Nanoparticle-Based Drug Delivery Risks
Many novel medical therapies use nanoparticle-based drug delivery systems, including nanomaterials through drug delivery systems, diagnostics, or physiologically active medicinal products. The approval of nanoparticles with advanced therapeutic and diagnostic potentials for applications in medicatio...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9959606/ https://www.ncbi.nlm.nih.gov/pubmed/36839932 http://dx.doi.org/10.3390/pharmaceutics15020612 |
_version_ | 1784895318900342784 |
---|---|
author | Pandey, Ramendra Pati Vidic, Jasmina Mukherjee, Riya Chang, Chung-Ming |
author_facet | Pandey, Ramendra Pati Vidic, Jasmina Mukherjee, Riya Chang, Chung-Ming |
author_sort | Pandey, Ramendra Pati |
collection | PubMed |
description | Many novel medical therapies use nanoparticle-based drug delivery systems, including nanomaterials through drug delivery systems, diagnostics, or physiologically active medicinal products. The approval of nanoparticles with advanced therapeutic and diagnostic potentials for applications in medication and immunization depends strongly on their synthesizing procedure, efficiency of functionalization, and biological safety and biocompatibility. Nanoparticle biodistribution, absorption, bioavailability, passage across biological barriers, and biodistribution are frequently assessed using bespoke and biological models. These methods largely rely on in vitro cell-based evaluations that cannot predict the complexity involved in preclinical and clinical studies. Therefore, assessing the nanoparticle risk has to involve pharmacokinetics, organ toxicity, and drug interactions manifested at multiple cellular levels. At the same time, there is a need for novel approaches to examine nanoparticle safety risks due to increased constraints on animal exploitation and the demand for high-throughput testing. We focus here on biological evaluation methodologies that provide access to nanoparticle interactions with the organism (positive or negative via toxicity). This work aimed to provide a perception regarding the risks associated with the utilization of nanoparticle-based formulations with a particular focus on assays applied to assess the cytotoxicity of nanomaterials. |
format | Online Article Text |
id | pubmed-9959606 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99596062023-02-26 Experimental Methods for the Biological Evaluation of Nanoparticle-Based Drug Delivery Risks Pandey, Ramendra Pati Vidic, Jasmina Mukherjee, Riya Chang, Chung-Ming Pharmaceutics Review Many novel medical therapies use nanoparticle-based drug delivery systems, including nanomaterials through drug delivery systems, diagnostics, or physiologically active medicinal products. The approval of nanoparticles with advanced therapeutic and diagnostic potentials for applications in medication and immunization depends strongly on their synthesizing procedure, efficiency of functionalization, and biological safety and biocompatibility. Nanoparticle biodistribution, absorption, bioavailability, passage across biological barriers, and biodistribution are frequently assessed using bespoke and biological models. These methods largely rely on in vitro cell-based evaluations that cannot predict the complexity involved in preclinical and clinical studies. Therefore, assessing the nanoparticle risk has to involve pharmacokinetics, organ toxicity, and drug interactions manifested at multiple cellular levels. At the same time, there is a need for novel approaches to examine nanoparticle safety risks due to increased constraints on animal exploitation and the demand for high-throughput testing. We focus here on biological evaluation methodologies that provide access to nanoparticle interactions with the organism (positive or negative via toxicity). This work aimed to provide a perception regarding the risks associated with the utilization of nanoparticle-based formulations with a particular focus on assays applied to assess the cytotoxicity of nanomaterials. MDPI 2023-02-11 /pmc/articles/PMC9959606/ /pubmed/36839932 http://dx.doi.org/10.3390/pharmaceutics15020612 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Pandey, Ramendra Pati Vidic, Jasmina Mukherjee, Riya Chang, Chung-Ming Experimental Methods for the Biological Evaluation of Nanoparticle-Based Drug Delivery Risks |
title | Experimental Methods for the Biological Evaluation of Nanoparticle-Based Drug Delivery Risks |
title_full | Experimental Methods for the Biological Evaluation of Nanoparticle-Based Drug Delivery Risks |
title_fullStr | Experimental Methods for the Biological Evaluation of Nanoparticle-Based Drug Delivery Risks |
title_full_unstemmed | Experimental Methods for the Biological Evaluation of Nanoparticle-Based Drug Delivery Risks |
title_short | Experimental Methods for the Biological Evaluation of Nanoparticle-Based Drug Delivery Risks |
title_sort | experimental methods for the biological evaluation of nanoparticle-based drug delivery risks |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9959606/ https://www.ncbi.nlm.nih.gov/pubmed/36839932 http://dx.doi.org/10.3390/pharmaceutics15020612 |
work_keys_str_mv | AT pandeyramendrapati experimentalmethodsforthebiologicalevaluationofnanoparticlebaseddrugdeliveryrisks AT vidicjasmina experimentalmethodsforthebiologicalevaluationofnanoparticlebaseddrugdeliveryrisks AT mukherjeeriya experimentalmethodsforthebiologicalevaluationofnanoparticlebaseddrugdeliveryrisks AT changchungming experimentalmethodsforthebiologicalevaluationofnanoparticlebaseddrugdeliveryrisks |