Cargando…
Enhancement of the Solubility of BS Class II Drugs with MOF and MOF/GO Composite Materials: Case Studies of Felodipine, Ketoprofen and Ibuprofen
In this research, a novel composite material composed of Metal-Organic Framework material (MOF) and graphite oxide was synthesized and evaluated as a possible drug-loading vehicle. HKUST-1, a MOF material originally designed by the Hong Kong University of Science and Technology, was used as a model...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9959679/ https://www.ncbi.nlm.nih.gov/pubmed/36837185 http://dx.doi.org/10.3390/ma16041554 |
Sumario: | In this research, a novel composite material composed of Metal-Organic Framework material (MOF) and graphite oxide was synthesized and evaluated as a possible drug-loading vehicle. HKUST-1, a MOF material originally designed by the Hong Kong University of Science and Technology, was used as a model porous material. The aim was to synthesize a drug delivery vehicle for modifying the release kinetics and solubility of poorly soluble drugs (BSC Class II drugs); these are drugs that are known to have poor bioavailability due to their low solubility. We used ketoprofen, ibuprofen, and felodipine as models for BSC Class II drugs. The drugs were loaded onto composite materials through adsorption. The adsorption of these three drugs into the matrix of HKUST-1/GO (graphite oxide), HKUST-1, and graphite oxide was compared. The loading efficiency of the drugs onto the carrier was dependent on the drug molecule and the composition of the drug carrier. The inclusion of graphite oxide in the drug carrier matrix improved the drug loading capacity and modified the drug release rate. The loading of the three drugs felodipine, ketoprofen, and ibuprofen onto HKUST-1 were 33.7, 58, and 79 mg/g respectively. The incorporation of GO into the HKUST-1 matrix resulted in an increase in the loading by 16 and 4 mg/g for the ketoprofen and ibuprofen drugs. When compared to the pure drugs, the solubility of all three drugs in the HKUST-1/GO matrix increased by at least 6 folds. |
---|