Cargando…
Research on Intelligent Identification and Grading of Nonmetallic Inclusions in Steels Based on Deep Learning
Non-metallic inclusions are unavoidable defects in steel, and their type, quantity, size, and distribution have a great impact on the quality of steel. At present, non-metallic inclusions are mainly detected manually, which features high work intensity, low efficiency, proneness to misjudgment, and...
Autores principales: | Zhu, Xiaolin, Wan, Wenhai, Qian, Ling, Cai, Yu, Chen, Xiang, Zhang, Pingze, Huang, Guanxi, Liu, Bo, Yao, Qiang, Li, Shaoyuan, Yao, Zhengjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9959681/ https://www.ncbi.nlm.nih.gov/pubmed/36838182 http://dx.doi.org/10.3390/mi14020482 |
Ejemplares similares
-
Effects of Cold Rolling on the Microstructure and Corrosion Resistance of the Double-Glow Plasma Ni-Cr Alloying Layer on Q235 Steel
por: Zhu, Xiaolin, et al.
Publicado: (2022) -
Research on Automatic Identification and Rating of Ferrite–Pearlite Grain Boundaries Based on Deep Learning
por: Zhu, Xiaolin, et al.
Publicado: (2023) -
Evolution of Chemical Composition and Modeling of Growth Nonmetallic Inclusions in Steel Containing Yttrium
por: Kalisz, Dorota, et al.
Publicado: (2021) -
Characteristics and Transformation Mechanism of Nonmetallic Inclusions in 304 Stainless Steel during Heat Treatment at 1250 °C
por: Yang, Wen-Sheng, et al.
Publicado: (2020) -
Symposium on Nonmetallic Materials and Composites at Low Temperatures
por: Clark, Alan F, et al.
Publicado: (1979)