Cargando…
Weighted Sparseness-Based Anomaly Detection for Hyperspectral Imagery
Anomaly detection of hyperspectral remote sensing data has recently become more attractive in hyperspectral image processing. The low-rank and sparse matrix decomposition-based anomaly detection algorithm (LRaSMD) exhibits poor detection performance in complex scenes with multiple background edges a...
Autores principales: | Lian, Xing, Zhao, Erwei, Zheng, Wei, Peng, Xiaodong, Li, Ang, Zhen, Zheng, Wen, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9959882/ https://www.ncbi.nlm.nih.gov/pubmed/36850660 http://dx.doi.org/10.3390/s23042055 |
Ejemplares similares
-
Hierarchical Sub-Pixel Anomaly Detection Framework for Hyperspectral Imagery
por: Wang, Wenzheng, et al.
Publicado: (2018) -
Progressive Line Processing of Kernel RX Anomaly Detection Algorithm for Hyperspectral Imagery
por: Zhao, Chunhui, et al.
Publicado: (2017) -
A High-Order Statistical Tensor Based Algorithm for Anomaly Detection in Hyperspectral Imagery
por: Geng, Xiurui, et al.
Publicado: (2014) -
Hierarchical Sparse Learning with Spectral-Spatial Information for Hyperspectral Imagery Denoising
por: Liu, Shuai, et al.
Publicado: (2016) -
A Distributed Parallel Algorithm Based on Low-Rank and Sparse Representation for Anomaly Detection in Hyperspectral Images
por: Zhang, Yi, et al.
Publicado: (2018)