Cargando…

A Receptor Tyrosine Kinase Inhibitor Sensitivity Prediction Model Identifies AXL Dependency in Leukemia

Despite incredible progress in cancer treatment, therapy resistance remains the leading limiting factor for long-term survival. During drug treatment, several genes are transcriptionally upregulated to mediate drug tolerance. Using highly variable genes and pharmacogenomic data for acute myeloid leu...

Descripción completa

Detalles Bibliográficos
Autores principales: Nasimian, Ahmad, Al Ashiri, Lina, Ahmed, Mehreen, Duan, Hongzhi, Zhang, Xiaoyue, Rönnstrand, Lars, Kazi, Julhash U.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9959897/
https://www.ncbi.nlm.nih.gov/pubmed/36835239
http://dx.doi.org/10.3390/ijms24043830
_version_ 1784895392382451712
author Nasimian, Ahmad
Al Ashiri, Lina
Ahmed, Mehreen
Duan, Hongzhi
Zhang, Xiaoyue
Rönnstrand, Lars
Kazi, Julhash U.
author_facet Nasimian, Ahmad
Al Ashiri, Lina
Ahmed, Mehreen
Duan, Hongzhi
Zhang, Xiaoyue
Rönnstrand, Lars
Kazi, Julhash U.
author_sort Nasimian, Ahmad
collection PubMed
description Despite incredible progress in cancer treatment, therapy resistance remains the leading limiting factor for long-term survival. During drug treatment, several genes are transcriptionally upregulated to mediate drug tolerance. Using highly variable genes and pharmacogenomic data for acute myeloid leukemia (AML), we developed a drug sensitivity prediction model for the receptor tyrosine kinase inhibitor sorafenib and achieved more than 80% prediction accuracy. Furthermore, by using Shapley additive explanations for determining leading features, we identified AXL as an important feature for drug resistance. Drug-resistant patient samples displayed enrichment of protein kinase C (PKC) signaling, which was also identified in sorafenib-treated FLT3-ITD-dependent AML cell lines by a peptide-based kinase profiling assay. Finally, we show that pharmacological inhibition of tyrosine kinase activity enhances AXL expression, phosphorylation of the PKC-substrate cyclic AMP response element binding (CREB) protein, and displays synergy with AXL and PKC inhibitors. Collectively, our data suggest an involvement of AXL in tyrosine kinase inhibitor resistance and link PKC activation as a possible signaling mediator.
format Online
Article
Text
id pubmed-9959897
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-99598972023-02-26 A Receptor Tyrosine Kinase Inhibitor Sensitivity Prediction Model Identifies AXL Dependency in Leukemia Nasimian, Ahmad Al Ashiri, Lina Ahmed, Mehreen Duan, Hongzhi Zhang, Xiaoyue Rönnstrand, Lars Kazi, Julhash U. Int J Mol Sci Article Despite incredible progress in cancer treatment, therapy resistance remains the leading limiting factor for long-term survival. During drug treatment, several genes are transcriptionally upregulated to mediate drug tolerance. Using highly variable genes and pharmacogenomic data for acute myeloid leukemia (AML), we developed a drug sensitivity prediction model for the receptor tyrosine kinase inhibitor sorafenib and achieved more than 80% prediction accuracy. Furthermore, by using Shapley additive explanations for determining leading features, we identified AXL as an important feature for drug resistance. Drug-resistant patient samples displayed enrichment of protein kinase C (PKC) signaling, which was also identified in sorafenib-treated FLT3-ITD-dependent AML cell lines by a peptide-based kinase profiling assay. Finally, we show that pharmacological inhibition of tyrosine kinase activity enhances AXL expression, phosphorylation of the PKC-substrate cyclic AMP response element binding (CREB) protein, and displays synergy with AXL and PKC inhibitors. Collectively, our data suggest an involvement of AXL in tyrosine kinase inhibitor resistance and link PKC activation as a possible signaling mediator. MDPI 2023-02-14 /pmc/articles/PMC9959897/ /pubmed/36835239 http://dx.doi.org/10.3390/ijms24043830 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Nasimian, Ahmad
Al Ashiri, Lina
Ahmed, Mehreen
Duan, Hongzhi
Zhang, Xiaoyue
Rönnstrand, Lars
Kazi, Julhash U.
A Receptor Tyrosine Kinase Inhibitor Sensitivity Prediction Model Identifies AXL Dependency in Leukemia
title A Receptor Tyrosine Kinase Inhibitor Sensitivity Prediction Model Identifies AXL Dependency in Leukemia
title_full A Receptor Tyrosine Kinase Inhibitor Sensitivity Prediction Model Identifies AXL Dependency in Leukemia
title_fullStr A Receptor Tyrosine Kinase Inhibitor Sensitivity Prediction Model Identifies AXL Dependency in Leukemia
title_full_unstemmed A Receptor Tyrosine Kinase Inhibitor Sensitivity Prediction Model Identifies AXL Dependency in Leukemia
title_short A Receptor Tyrosine Kinase Inhibitor Sensitivity Prediction Model Identifies AXL Dependency in Leukemia
title_sort receptor tyrosine kinase inhibitor sensitivity prediction model identifies axl dependency in leukemia
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9959897/
https://www.ncbi.nlm.nih.gov/pubmed/36835239
http://dx.doi.org/10.3390/ijms24043830
work_keys_str_mv AT nasimianahmad areceptortyrosinekinaseinhibitorsensitivitypredictionmodelidentifiesaxldependencyinleukemia
AT alashirilina areceptortyrosinekinaseinhibitorsensitivitypredictionmodelidentifiesaxldependencyinleukemia
AT ahmedmehreen areceptortyrosinekinaseinhibitorsensitivitypredictionmodelidentifiesaxldependencyinleukemia
AT duanhongzhi areceptortyrosinekinaseinhibitorsensitivitypredictionmodelidentifiesaxldependencyinleukemia
AT zhangxiaoyue areceptortyrosinekinaseinhibitorsensitivitypredictionmodelidentifiesaxldependencyinleukemia
AT ronnstrandlars areceptortyrosinekinaseinhibitorsensitivitypredictionmodelidentifiesaxldependencyinleukemia
AT kazijulhashu areceptortyrosinekinaseinhibitorsensitivitypredictionmodelidentifiesaxldependencyinleukemia
AT nasimianahmad receptortyrosinekinaseinhibitorsensitivitypredictionmodelidentifiesaxldependencyinleukemia
AT alashirilina receptortyrosinekinaseinhibitorsensitivitypredictionmodelidentifiesaxldependencyinleukemia
AT ahmedmehreen receptortyrosinekinaseinhibitorsensitivitypredictionmodelidentifiesaxldependencyinleukemia
AT duanhongzhi receptortyrosinekinaseinhibitorsensitivitypredictionmodelidentifiesaxldependencyinleukemia
AT zhangxiaoyue receptortyrosinekinaseinhibitorsensitivitypredictionmodelidentifiesaxldependencyinleukemia
AT ronnstrandlars receptortyrosinekinaseinhibitorsensitivitypredictionmodelidentifiesaxldependencyinleukemia
AT kazijulhashu receptortyrosinekinaseinhibitorsensitivitypredictionmodelidentifiesaxldependencyinleukemia