Cargando…

Nearly Periodic Maps and Geometric Integration of Noncanonical Hamiltonian Systems

M. Kruskal showed that each continuous-time nearly periodic dynamical system admits a formal U(1)-symmetry, generated by the so-called roto-rate. When the nearly periodic system is also Hamiltonian, Noether’s theorem implies the existence of a corresponding adiabatic invariant. We develop a discrete...

Descripción completa

Detalles Bibliográficos
Autores principales: Burby, J. W., Hirvijoki, E., Leok, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9959966/
https://www.ncbi.nlm.nih.gov/pubmed/36873193
http://dx.doi.org/10.1007/s00332-023-09891-4
Descripción
Sumario:M. Kruskal showed that each continuous-time nearly periodic dynamical system admits a formal U(1)-symmetry, generated by the so-called roto-rate. When the nearly periodic system is also Hamiltonian, Noether’s theorem implies the existence of a corresponding adiabatic invariant. We develop a discrete-time analog of Kruskal’s theory. Nearly periodic maps are defined as parameter-dependent diffeomorphisms that limit to rotations along a U(1)-action. When the limiting rotation is non-resonant, these maps admit formal U(1)-symmetries to all orders in perturbation theory. For Hamiltonian nearly periodic maps on exact presymplectic manifolds, we prove that the formal U(1)-symmetry gives rise to a discrete-time adiabatic invariant using a discrete-time extension of Noether’s theorem. When the unperturbed U(1)-orbits are contractible, we also find a discrete-time adiabatic invariant for mappings that are merely presymplectic, rather than Hamiltonian. As an application of the theory, we use it to develop a novel technique for geometric integration of non-canonical Hamiltonian systems on exact symplectic manifolds.