Cargando…
Selective Immobilization of His-Tagged Enzyme on Ni-Chelated Ion Exchange Resin and Its Application in Protein Purification
Ion exchange resins are suitable as carriers for immobilized enzymes because of their stable physicochemical properties, appropriate particle size and pore structure, and lower loss in continuous operation. In this paper, we report the application of the Ni-chelated ion exchange resin in the immobil...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960010/ https://www.ncbi.nlm.nih.gov/pubmed/36835274 http://dx.doi.org/10.3390/ijms24043864 |
Sumario: | Ion exchange resins are suitable as carriers for immobilized enzymes because of their stable physicochemical properties, appropriate particle size and pore structure, and lower loss in continuous operation. In this paper, we report the application of the Ni-chelated ion exchange resin in the immobilization of His-tagged enzyme and protein purification. Acrylic weak acid cation exchange resin (D113H) was selected from four cationic macroporous resins that could chelate the transition metal ion Ni. The maximum adsorption capacity of Ni was ~198 mg/g. Phosphomannose isomerase (PMI) can be successfully immobilized on Ni-chelated D113H from crude enzyme solution through chelation of transition metal ions with the His-tag on the enzyme. The maximum amount of immobilized PMI on the resin was ~143 mg/g. Notably, the immobilized enzyme showed excellent reusability and maintained 92% of its initial activity with 10 cycles of catalytic reaction. In addition, PMI was successfully purified using an affinity chromatography column prepared by Ni-chelated D113H, which showed the potential for the immobilization and purification process to be realized in one step. |
---|