Cargando…
Automated Sleep Stages Classification Using Convolutional Neural Network From Raw and Time-Frequency Electroencephalogram Signals: Systematic Evaluation Study
BACKGROUND: Most existing automated sleep staging methods rely on multimodal data, and scoring a specific epoch requires not only the current epoch but also a sequence of consecutive epochs that precede and follow the epoch. OBJECTIVE: We proposed and tested a convolutional neural network called Sle...
Autores principales: | Haghayegh, Shahab, Hu, Kun, Stone, Katie, Redline, Susan, Schernhammer, Eva |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960035/ https://www.ncbi.nlm.nih.gov/pubmed/36763454 http://dx.doi.org/10.2196/40211 |
Ejemplares similares
-
Convolution- and Attention-Based Neural Network for Automated Sleep Stage Classification
por: Zhu, Tianqi, et al.
Publicado: (2020) -
Multivariate prediction of cognitive performance from the sleep electroencephalogram
por: Ujma, Péter P., et al.
Publicado: (2023) -
Deep Convolutional Neural Network-Based Epileptic Electroencephalogram (EEG) Signal Classification
por: Gao, Yunyuan, et al.
Publicado: (2020) -
A Multibranch of Convolutional Neural Network Models for Electroencephalogram-Based Motor Imagery Classification
por: Altuwaijri, Ghadir Ali, et al.
Publicado: (2022) -
Exploiting Graphoelements and Convolutional Neural Networks with Long Short Term Memory for Classification of the Human Electroencephalogram
por: Nejedly, P., et al.
Publicado: (2019)