Cargando…
Gaussian Blurring Technique for Detecting and Classifying Acute Lymphoblastic Leukemia Cancer Cells from Microscopic Biopsy Images
Visual inspection of peripheral blood samples is a critical step in the leukemia diagnostic process. Automated solutions based on artificial vision approaches can accelerate this procedure, while also improving accuracy and uniformity of response in telemedicine applications. In this study, we propo...
Autores principales: | Devi, Tulasi Gayatri, Patil, Nagamma, Rai, Sharada, Philipose, Cheryl Sarah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960087/ https://www.ncbi.nlm.nih.gov/pubmed/36836703 http://dx.doi.org/10.3390/life13020348 |
Ejemplares similares
-
Classifying microscopic images as acute lymphoblastic leukemia by Resnet ensemble model and Taguchi method
por: Chen, Yao-Mei, et al.
Publicado: (2022) -
Blind blur assessment of MRI images using parallel multiscale difference of Gaussian filters
por: Osadebey, Michael E., et al.
Publicado: (2018) -
Three-dimensional modelling of blur property for conventional optical microscopes
por: Hou, Weihan, et al.
Publicado: (2023) -
Recognition of Acute Lymphoblastic Leukemia Cells in Microscopic Images Using K-Means Clustering and Support Vector Machine Classifier
por: Amin, Morteza Moradi, et al.
Publicado: (2015) -
A Quest for Accuracy: Evaluation of The Paris System in Diagnosis of Urothelial Carcinomas
por: Rai, Sharada, et al.
Publicado: (2019)