Cargando…
End-to-End Deep-Learning-Based Diagnosis of Benign and Malignant Orbital Tumors on Computed Tomography Images
Determining the nature of orbital tumors is challenging for current imaging interpretation methods, which hinders timely treatment. This study aimed to propose an end-to-end deep learning system to automatically diagnose orbital tumors. A multi-center dataset of 602 non-contrast-enhanced computed to...
Autores principales: | Shao, Ji, Zhu, Jiazhu, Jin, Kai, Guan, Xiaojun, Jian, Tianming, Xue, Ying, Wang, Changjun, Xu, Xiaojun, Sun, Fengyuan, Si, Ke, Gong, Wei, Ye, Juan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960119/ https://www.ncbi.nlm.nih.gov/pubmed/36836437 http://dx.doi.org/10.3390/jpm13020204 |
Ejemplares similares
-
Fully end-to-end deep-learning-based diagnosis of pancreatic tumors
por: Si, Ke, et al.
Publicado: (2021) -
Value of MR imaging in the differentiation of benign and malignant orbital tumors in adults
por: Xian, Junfang, et al.
Publicado: (2010) -
Deep learning for end-to-end kidney cancer diagnosis on multi-phase abdominal computed tomography
por: Uhm, Kwang-Hyun, et al.
Publicado: (2021) -
On the influence of magnetic end effects on the orbits
por: Regenstreif, E
Publicado: (1955) -
Ectopic orbital meningioma: a retrospective case series
por: Huang, Xiaoming, et al.
Publicado: (2018)