Cargando…
Improving Intensive Care Unit Early Readmission Prediction Using Optimized and Explainable Machine Learning
It is of great interest to develop and introduce new techniques to automatically and efficiently analyze the enormous amount of data generated in today’s hospitals, using state-of-the-art artificial intelligence methods. Patients readmitted to the ICU in the same hospital stay have a higher risk of...
Autores principales: | González-Nóvoa, José A., Campanioni, Silvia, Busto, Laura, Fariña, José, Rodríguez-Andina, Juan J., Vila, Dolores, Íñiguez, Andrés, Veiga, César |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960143/ https://www.ncbi.nlm.nih.gov/pubmed/36834150 http://dx.doi.org/10.3390/ijerph20043455 |
Ejemplares similares
-
Two-Step Approach for Occupancy Estimation in Intensive Care Units Based on Bayesian Optimization Techniques
por: González-Nóvoa, José A., et al.
Publicado: (2023) -
Using Explainable Machine Learning to Improve Intensive Care Unit Alarm Systems
por: González-Nóvoa, José A., et al.
Publicado: (2021) -
Data-Driven Phenotyping of Alzheimer’s Disease under Epigenetic Conditions Using Partial Volume Correction of PET Studies and Manifold Learning
por: Campanioni, Silvia, et al.
Publicado: (2023) -
Automatic Assessment of Transcatheter Aortic Valve Implantation Results on Four-Dimensional Computed Tomography Images Using Artificial Intelligence
por: Busto, Laura, et al.
Publicado: (2023) -
Automatic Identification of Bioprostheses on X-ray Angiographic Sequences of Transcatheter Aortic Valve Implantation Procedures Using Deep Learning
por: Busto, Laura, et al.
Publicado: (2022)