Cargando…
Aromatic Residues on the Side Surface of Cry4Ba-Domain II of Bacillus thuringiensis subsp. israelensis Function in Binding to Their Counterpart Residues on the Aedes aegypti Alkaline Phosphatase Receptor
Receptor binding is a prerequisite process to exert the mosquitocidal activity of the Cry4Ba toxin of Bacillus thuringiensis subsp. israelensis. The beta-sheet prism (domain II) and beta-sheet sandwich (domain III) of the Cry4Ba toxin have been implicated in receptor binding, albeit the precise bind...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960242/ https://www.ncbi.nlm.nih.gov/pubmed/36828427 http://dx.doi.org/10.3390/toxins15020114 |
_version_ | 1784895466560815104 |
---|---|
author | Thammasittirong, Anon Thammasittirong, Sutticha Na-Ranong |
author_facet | Thammasittirong, Anon Thammasittirong, Sutticha Na-Ranong |
author_sort | Thammasittirong, Anon |
collection | PubMed |
description | Receptor binding is a prerequisite process to exert the mosquitocidal activity of the Cry4Ba toxin of Bacillus thuringiensis subsp. israelensis. The beta-sheet prism (domain II) and beta-sheet sandwich (domain III) of the Cry4Ba toxin have been implicated in receptor binding, albeit the precise binding mechanisms of these remain unclear. In this work, alanine scanning was used to determine the contribution to receptor binding of some aromatic and hydrophobic residues on the surface of domains II and III that are predicted to be responsible for binding to the Aedes aegypti membrane-bound alkaline phosphatase (Aa-mALP) receptor. Larvicidal activity assays against A. aegypti larvae revealed that aromatic residues (Trp(327) on the β2 strand, Tyr(347) on the β3–β4 loop, and Tyr(359) on the β4 strand) of domain II were important to the toxicity of the Cry4Ba toxin. Quantitative binding assays using enzyme-linked immunosorbent assay (ELISA) showed similar decreasing trends in binding to the Aa-mALP receptor and in toxicity of the Cry4Ba mutants Trp327Ala, Tyr347Ala, and Tyr359Ala, suggesting that a possible function of these surface-exposed aromatic residues is receptor binding. In addition, binding assays of the Cry4Ba toxin to the mutants of the binding residues Gly(513), Ser(490), and Phe(497) of the Aa-mALP receptor supported the binding function of Trp(327), Tyr(347), and Tyr(359) of the Cry4Ba toxin, respectively. Altogether, our results showed for the first time that aromatic residues on a side surface of the Cry4Ba domain II function in receptor binding. This finding provides greater insight into the possible molecular mechanisms of the Cry4Ba toxin. |
format | Online Article Text |
id | pubmed-9960242 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99602422023-02-26 Aromatic Residues on the Side Surface of Cry4Ba-Domain II of Bacillus thuringiensis subsp. israelensis Function in Binding to Their Counterpart Residues on the Aedes aegypti Alkaline Phosphatase Receptor Thammasittirong, Anon Thammasittirong, Sutticha Na-Ranong Toxins (Basel) Article Receptor binding is a prerequisite process to exert the mosquitocidal activity of the Cry4Ba toxin of Bacillus thuringiensis subsp. israelensis. The beta-sheet prism (domain II) and beta-sheet sandwich (domain III) of the Cry4Ba toxin have been implicated in receptor binding, albeit the precise binding mechanisms of these remain unclear. In this work, alanine scanning was used to determine the contribution to receptor binding of some aromatic and hydrophobic residues on the surface of domains II and III that are predicted to be responsible for binding to the Aedes aegypti membrane-bound alkaline phosphatase (Aa-mALP) receptor. Larvicidal activity assays against A. aegypti larvae revealed that aromatic residues (Trp(327) on the β2 strand, Tyr(347) on the β3–β4 loop, and Tyr(359) on the β4 strand) of domain II were important to the toxicity of the Cry4Ba toxin. Quantitative binding assays using enzyme-linked immunosorbent assay (ELISA) showed similar decreasing trends in binding to the Aa-mALP receptor and in toxicity of the Cry4Ba mutants Trp327Ala, Tyr347Ala, and Tyr359Ala, suggesting that a possible function of these surface-exposed aromatic residues is receptor binding. In addition, binding assays of the Cry4Ba toxin to the mutants of the binding residues Gly(513), Ser(490), and Phe(497) of the Aa-mALP receptor supported the binding function of Trp(327), Tyr(347), and Tyr(359) of the Cry4Ba toxin, respectively. Altogether, our results showed for the first time that aromatic residues on a side surface of the Cry4Ba domain II function in receptor binding. This finding provides greater insight into the possible molecular mechanisms of the Cry4Ba toxin. MDPI 2023-01-29 /pmc/articles/PMC9960242/ /pubmed/36828427 http://dx.doi.org/10.3390/toxins15020114 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Thammasittirong, Anon Thammasittirong, Sutticha Na-Ranong Aromatic Residues on the Side Surface of Cry4Ba-Domain II of Bacillus thuringiensis subsp. israelensis Function in Binding to Their Counterpart Residues on the Aedes aegypti Alkaline Phosphatase Receptor |
title | Aromatic Residues on the Side Surface of Cry4Ba-Domain II of Bacillus thuringiensis subsp. israelensis Function in Binding to Their Counterpart Residues on the Aedes aegypti Alkaline Phosphatase Receptor |
title_full | Aromatic Residues on the Side Surface of Cry4Ba-Domain II of Bacillus thuringiensis subsp. israelensis Function in Binding to Their Counterpart Residues on the Aedes aegypti Alkaline Phosphatase Receptor |
title_fullStr | Aromatic Residues on the Side Surface of Cry4Ba-Domain II of Bacillus thuringiensis subsp. israelensis Function in Binding to Their Counterpart Residues on the Aedes aegypti Alkaline Phosphatase Receptor |
title_full_unstemmed | Aromatic Residues on the Side Surface of Cry4Ba-Domain II of Bacillus thuringiensis subsp. israelensis Function in Binding to Their Counterpart Residues on the Aedes aegypti Alkaline Phosphatase Receptor |
title_short | Aromatic Residues on the Side Surface of Cry4Ba-Domain II of Bacillus thuringiensis subsp. israelensis Function in Binding to Their Counterpart Residues on the Aedes aegypti Alkaline Phosphatase Receptor |
title_sort | aromatic residues on the side surface of cry4ba-domain ii of bacillus thuringiensis subsp. israelensis function in binding to their counterpart residues on the aedes aegypti alkaline phosphatase receptor |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960242/ https://www.ncbi.nlm.nih.gov/pubmed/36828427 http://dx.doi.org/10.3390/toxins15020114 |
work_keys_str_mv | AT thammasittironganon aromaticresiduesonthesidesurfaceofcry4badomainiiofbacillusthuringiensissubspisraelensisfunctioninbindingtotheircounterpartresiduesontheaedesaegyptialkalinephosphatasereceptor AT thammasittirongsuttichanaranong aromaticresiduesonthesidesurfaceofcry4badomainiiofbacillusthuringiensissubspisraelensisfunctioninbindingtotheircounterpartresiduesontheaedesaegyptialkalinephosphatasereceptor |