Cargando…
Real-Time Forest Fire Detection by Ensemble Lightweight YOLOX-L and Defogging Method
Forest fires can destroy forest and inflict great damage to the ecosystem. Fortunately, forest fire detection with video has achieved remarkable results in enabling timely and accurate fire warnings. However, the traditional forest fire detection method relies heavily on artificially designed featur...
Autores principales: | Huang, Jiarun, He, Zhili, Guan, Yuwei, Zhang, Hongguo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960251/ https://www.ncbi.nlm.nih.gov/pubmed/36850496 http://dx.doi.org/10.3390/s23041894 |
Ejemplares similares
-
Object Detection Based on Lightweight YOLOX for Autonomous Driving
por: He, Qiyi, et al.
Publicado: (2023) -
An Improved YOLOX Algorithm for Forest Insect Pest Detection
por: Huang, Jiyu, et al.
Publicado: (2022) -
ASFL-YOLOX: an adaptive spatial feature fusion and lightweight detection method for insect pests of the Papilionidae family
por: Xu, Lijia, et al.
Publicado: (2023) -
Endoscopic video defogging using luminance blending
por: Luo, Xiongbiao, et al.
Publicado: (2019) -
Lightweight forest smoke and fire detection algorithm based on improved YOLOv5
por: Yang, Jie, et al.
Publicado: (2023)