Cargando…
Bond Behavior of Steel Rebar Embedded in Cementitious Composites Containing Polyvinyl Alcohol (PVA) Fibers and Carbon Nanotubes (CNTs)
In this study, pull-out tests were conducted to investigate the bond behavior of a rebar embedded in cementitious composites with polyvinyl alcohol (PVA) fibers and carbon nanotubes (CNTs). In the cementitious composites, the binder consisted of ordinary Portland cement, blast furnace slag, and fly...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960286/ https://www.ncbi.nlm.nih.gov/pubmed/36850166 http://dx.doi.org/10.3390/polym15040884 |
_version_ | 1784895477289844736 |
---|---|
author | Lee, Dongmin Lee, Seong-Cheol Yoo, Sung-Won |
author_facet | Lee, Dongmin Lee, Seong-Cheol Yoo, Sung-Won |
author_sort | Lee, Dongmin |
collection | PubMed |
description | In this study, pull-out tests were conducted to investigate the bond behavior of a rebar embedded in cementitious composites with polyvinyl alcohol (PVA) fibers and carbon nanotubes (CNTs). In the cementitious composites, the binder consisted of ordinary Portland cement, blast furnace slag, and fly ash, with a weight ratio of 39.5, 21.0 and 39.5%, respectively, while the nonbinder consisted of quartzite sand, lightweight aggregate, superplasticizer, and shrinkage-reducing admixture. The water/binder ratio and volume fractions of the PVA fibers were 32.9% and 2.07%, respectively. In the test program, the rebar diameter (D13, D16, and D19) and CNTs mix ratio (0.0, 0.1, 0.2, and 0.3 wt.%) were considered as the test variables. The test results showed that the bond strength of a rebar increased as the rebar diameter decreased or as the CNTs mix ratio increased. Based on the test results, a new, simple model has been proposed with consideration of the rebar diameter, as well as the CNTs mix ratio. Comparing the test results, it was investigated that the proposed model generally represented the bond behavior well, including the bond strength and the corresponding slip of a rebar embedded in PVA cementitious composites, with or without CNTs. |
format | Online Article Text |
id | pubmed-9960286 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99602862023-02-26 Bond Behavior of Steel Rebar Embedded in Cementitious Composites Containing Polyvinyl Alcohol (PVA) Fibers and Carbon Nanotubes (CNTs) Lee, Dongmin Lee, Seong-Cheol Yoo, Sung-Won Polymers (Basel) Article In this study, pull-out tests were conducted to investigate the bond behavior of a rebar embedded in cementitious composites with polyvinyl alcohol (PVA) fibers and carbon nanotubes (CNTs). In the cementitious composites, the binder consisted of ordinary Portland cement, blast furnace slag, and fly ash, with a weight ratio of 39.5, 21.0 and 39.5%, respectively, while the nonbinder consisted of quartzite sand, lightweight aggregate, superplasticizer, and shrinkage-reducing admixture. The water/binder ratio and volume fractions of the PVA fibers were 32.9% and 2.07%, respectively. In the test program, the rebar diameter (D13, D16, and D19) and CNTs mix ratio (0.0, 0.1, 0.2, and 0.3 wt.%) were considered as the test variables. The test results showed that the bond strength of a rebar increased as the rebar diameter decreased or as the CNTs mix ratio increased. Based on the test results, a new, simple model has been proposed with consideration of the rebar diameter, as well as the CNTs mix ratio. Comparing the test results, it was investigated that the proposed model generally represented the bond behavior well, including the bond strength and the corresponding slip of a rebar embedded in PVA cementitious composites, with or without CNTs. MDPI 2023-02-10 /pmc/articles/PMC9960286/ /pubmed/36850166 http://dx.doi.org/10.3390/polym15040884 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lee, Dongmin Lee, Seong-Cheol Yoo, Sung-Won Bond Behavior of Steel Rebar Embedded in Cementitious Composites Containing Polyvinyl Alcohol (PVA) Fibers and Carbon Nanotubes (CNTs) |
title | Bond Behavior of Steel Rebar Embedded in Cementitious Composites Containing Polyvinyl Alcohol (PVA) Fibers and Carbon Nanotubes (CNTs) |
title_full | Bond Behavior of Steel Rebar Embedded in Cementitious Composites Containing Polyvinyl Alcohol (PVA) Fibers and Carbon Nanotubes (CNTs) |
title_fullStr | Bond Behavior of Steel Rebar Embedded in Cementitious Composites Containing Polyvinyl Alcohol (PVA) Fibers and Carbon Nanotubes (CNTs) |
title_full_unstemmed | Bond Behavior of Steel Rebar Embedded in Cementitious Composites Containing Polyvinyl Alcohol (PVA) Fibers and Carbon Nanotubes (CNTs) |
title_short | Bond Behavior of Steel Rebar Embedded in Cementitious Composites Containing Polyvinyl Alcohol (PVA) Fibers and Carbon Nanotubes (CNTs) |
title_sort | bond behavior of steel rebar embedded in cementitious composites containing polyvinyl alcohol (pva) fibers and carbon nanotubes (cnts) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960286/ https://www.ncbi.nlm.nih.gov/pubmed/36850166 http://dx.doi.org/10.3390/polym15040884 |
work_keys_str_mv | AT leedongmin bondbehaviorofsteelrebarembeddedincementitiouscompositescontainingpolyvinylalcoholpvafibersandcarbonnanotubescnts AT leeseongcheol bondbehaviorofsteelrebarembeddedincementitiouscompositescontainingpolyvinylalcoholpvafibersandcarbonnanotubescnts AT yoosungwon bondbehaviorofsteelrebarembeddedincementitiouscompositescontainingpolyvinylalcoholpvafibersandcarbonnanotubescnts |