Cargando…

Metabolomics-Based Profiling via a Chemometric Approach to Investigate the Antidiabetic Property of Different Parts and Origins of Pistacia lentiscus L.

Pistacia lentiscus L. is a medicinal plant that grows spontaneously throughout the Mediterranean basin and is traditionally used to treat diseases, including diabetes. The aim of this work consists of the evaluation of the α-glucosidase inhibitory effect (i.e., antidiabetic activity in vitro) of dif...

Descripción completa

Detalles Bibliográficos
Autores principales: Sehaki, Chabha, Molinie, Roland, Mathiron, David, Fontaine, Jean-Xavier, Jullian, Nathalie, Ayati, Fadila, Fernane, Farida, Gontier, Eric
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960292/
https://www.ncbi.nlm.nih.gov/pubmed/36837894
http://dx.doi.org/10.3390/metabo13020275
Descripción
Sumario:Pistacia lentiscus L. is a medicinal plant that grows spontaneously throughout the Mediterranean basin and is traditionally used to treat diseases, including diabetes. The aim of this work consists of the evaluation of the α-glucosidase inhibitory effect (i.e., antidiabetic activity in vitro) of different extracts from the leaves, stem barks and fruits of P. lentiscus harvested on mountains and the littoral of Tizi-Ouzou in Algeria. Metabolomic profiling combined with a chemometric approach highlighted the variation of the antidiabetic properties of P. lentiscus according to the plant’s part and origin. A multiblock OPLS analysis showed that the metabolites most involved in α-glucosidase inhibition activity were mainly found in the stem bark extracts. The highest inhibitory activity was found for the stem bark extracts, with averaged inhibition percentage values of 84.7% and 69.9% for the harvested samples from the littoral and mountain, respectively. On the other hand, the fruit extracts showed a lower effect (13.6%) at both locations. The UHPLC-ESI-HRMS characterization of the metabolites most likely responsible for the α-glucosidase-inhibitory activity allowed the identification of six compounds: epigallocatechin(4a>8)epigallocatechin (two isomers), (epi)gallocatechin-3′-O-galloyl-(epi)gallocatechin (two isomers), 3,5-O-digalloylquinic acid and dihydroxy benzoic acid pentoside.