Cargando…
Predicting RP-LC retention indices of structurally unknown chemicals from mass spectrometry data
Non-target analysis combined with liquid chromatography high resolution mass spectrometry is considered one of the most comprehensive strategies for the detection and identification of known and unknown chemicals in complex samples. However, many compounds remain unidentified due to data complexity...
Autores principales: | Boelrijk, Jim, van Herwerden, Denice, Ensing, Bernd, Forré, Patrick, Samanipour, Saer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960388/ https://www.ncbi.nlm.nih.gov/pubmed/36829215 http://dx.doi.org/10.1186/s13321-023-00699-8 |
Ejemplares similares
-
Chemometric
Strategies for Fully Automated Interpretive
Method Development in Liquid Chromatography
por: Bos, Tijmen S., et al.
Publicado: (2022) -
Cumulative
Neutral Loss Model for Fragment Deconvolution
in Electrospray Ionization High-Resolution Mass Spectrometry Data
por: van Herwerden, Denice, et al.
Publicado: (2023) -
Collision Cross Section Prediction with Molecular Fingerprint Using Machine Learning
por: Yang, Fan, et al.
Publicado: (2022) -
Critical
Assessment of the Chemical Space Covered
by LC–HRMS Non-Targeted Analysis
por: Hulleman, Tobias, et al.
Publicado: (2023) -
Utilization of Machine Learning for the Differentiation
of Positional NPS Isomers with Direct Analysis in Real Time Mass Spectrometry
por: Bonetti, Jennifer L., et al.
Publicado: (2022)