Cargando…
Asbestos Fibers Enhance the TMEM16A Channel Activity in Xenopus Oocytes
Background: The interaction of asbestos fibers with target cell membranes is still poorly investigated. Here, we detected and characterized an enhancement of chloride conductance in Xenopus oocyte cell membranes induced by exposure to crocidolite (Croc) asbestos fibers. Methods: A two-microelectrode...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960392/ https://www.ncbi.nlm.nih.gov/pubmed/36837683 http://dx.doi.org/10.3390/membranes13020180 |
_version_ | 1784895503242100736 |
---|---|
author | Bernareggi, Annalisa Zangari, Martina Constanti, Andrew Zacchi, Paola Borelli, Violetta Mangogna, Alessandro Lorenzon, Paola Zabucchi, Giuliano |
author_facet | Bernareggi, Annalisa Zangari, Martina Constanti, Andrew Zacchi, Paola Borelli, Violetta Mangogna, Alessandro Lorenzon, Paola Zabucchi, Giuliano |
author_sort | Bernareggi, Annalisa |
collection | PubMed |
description | Background: The interaction of asbestos fibers with target cell membranes is still poorly investigated. Here, we detected and characterized an enhancement of chloride conductance in Xenopus oocyte cell membranes induced by exposure to crocidolite (Croc) asbestos fibers. Methods: A two-microelectrode voltage clamp technique was used to test the effect of Croc fiber suspensions on outward chloride currents evoked by step membrane depolarization. Calcium imaging experiments were also performed to investigate the variation of ‘resting’ oocyte [Ca(2+)](i) following asbestos exposure. Results: The increase in chloride current after asbestos treatment, was sensitive to [Ca(2+)](e), and to specific blockers of TMEM16A Ca(2+)-activated chloride channels, MONNA and Ani9. Furthermore, asbestos treatment elevated the ‘resting’ [Ca(2+)](i) likelihood by increasing the cell membrane permeability to Ca(2) in favor of a tonic activation of TMEME16A channels(.) Western blot analysis confirmed that TMEME16A protein was endogenously present in the oocyte cell membrane and absorbed by Croc. Conclusion: the TMEM16A channels endogenously expressed by Xenopus oocytes are targets for asbestos fibers and represent a powerful tool for asbestos–membrane interaction studies. Interestingly, TMEM16A channels are highly expressed in many types of tumors, including some asbestos-related cancers, suggesting them, for the first time, as a possible early target of crocidolite-mediated tumorigenic effects on target cell membranes. |
format | Online Article Text |
id | pubmed-9960392 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99603922023-02-26 Asbestos Fibers Enhance the TMEM16A Channel Activity in Xenopus Oocytes Bernareggi, Annalisa Zangari, Martina Constanti, Andrew Zacchi, Paola Borelli, Violetta Mangogna, Alessandro Lorenzon, Paola Zabucchi, Giuliano Membranes (Basel) Article Background: The interaction of asbestos fibers with target cell membranes is still poorly investigated. Here, we detected and characterized an enhancement of chloride conductance in Xenopus oocyte cell membranes induced by exposure to crocidolite (Croc) asbestos fibers. Methods: A two-microelectrode voltage clamp technique was used to test the effect of Croc fiber suspensions on outward chloride currents evoked by step membrane depolarization. Calcium imaging experiments were also performed to investigate the variation of ‘resting’ oocyte [Ca(2+)](i) following asbestos exposure. Results: The increase in chloride current after asbestos treatment, was sensitive to [Ca(2+)](e), and to specific blockers of TMEM16A Ca(2+)-activated chloride channels, MONNA and Ani9. Furthermore, asbestos treatment elevated the ‘resting’ [Ca(2+)](i) likelihood by increasing the cell membrane permeability to Ca(2) in favor of a tonic activation of TMEME16A channels(.) Western blot analysis confirmed that TMEME16A protein was endogenously present in the oocyte cell membrane and absorbed by Croc. Conclusion: the TMEM16A channels endogenously expressed by Xenopus oocytes are targets for asbestos fibers and represent a powerful tool for asbestos–membrane interaction studies. Interestingly, TMEM16A channels are highly expressed in many types of tumors, including some asbestos-related cancers, suggesting them, for the first time, as a possible early target of crocidolite-mediated tumorigenic effects on target cell membranes. MDPI 2023-02-01 /pmc/articles/PMC9960392/ /pubmed/36837683 http://dx.doi.org/10.3390/membranes13020180 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bernareggi, Annalisa Zangari, Martina Constanti, Andrew Zacchi, Paola Borelli, Violetta Mangogna, Alessandro Lorenzon, Paola Zabucchi, Giuliano Asbestos Fibers Enhance the TMEM16A Channel Activity in Xenopus Oocytes |
title | Asbestos Fibers Enhance the TMEM16A Channel Activity in Xenopus Oocytes |
title_full | Asbestos Fibers Enhance the TMEM16A Channel Activity in Xenopus Oocytes |
title_fullStr | Asbestos Fibers Enhance the TMEM16A Channel Activity in Xenopus Oocytes |
title_full_unstemmed | Asbestos Fibers Enhance the TMEM16A Channel Activity in Xenopus Oocytes |
title_short | Asbestos Fibers Enhance the TMEM16A Channel Activity in Xenopus Oocytes |
title_sort | asbestos fibers enhance the tmem16a channel activity in xenopus oocytes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960392/ https://www.ncbi.nlm.nih.gov/pubmed/36837683 http://dx.doi.org/10.3390/membranes13020180 |
work_keys_str_mv | AT bernareggiannalisa asbestosfibersenhancethetmem16achannelactivityinxenopusoocytes AT zangarimartina asbestosfibersenhancethetmem16achannelactivityinxenopusoocytes AT constantiandrew asbestosfibersenhancethetmem16achannelactivityinxenopusoocytes AT zacchipaola asbestosfibersenhancethetmem16achannelactivityinxenopusoocytes AT borellivioletta asbestosfibersenhancethetmem16achannelactivityinxenopusoocytes AT mangognaalessandro asbestosfibersenhancethetmem16achannelactivityinxenopusoocytes AT lorenzonpaola asbestosfibersenhancethetmem16achannelactivityinxenopusoocytes AT zabucchigiuliano asbestosfibersenhancethetmem16achannelactivityinxenopusoocytes |