Cargando…
Influence of the Graft Length on Nanocomposite Structure and Interfacial Dynamics
Both the dispersion state of nanoparticles (NPs) within polymer nanocomposites (PNCs) and the dynamical state of the polymer altered by the presence of the NP/polymer interfaces have a strong impact on the macroscopic properties of PNCs. In particular, mechanical properties are strongly affected by...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960434/ https://www.ncbi.nlm.nih.gov/pubmed/36839117 http://dx.doi.org/10.3390/nano13040748 |
_version_ | 1784895513278021632 |
---|---|
author | Genix, Anne-Caroline Bocharova, Vera Carroll, Bobby Dieudonné-George, Philippe Chauveau, Edouard Sokolov, Alexei P. Oberdisse, Julian |
author_facet | Genix, Anne-Caroline Bocharova, Vera Carroll, Bobby Dieudonné-George, Philippe Chauveau, Edouard Sokolov, Alexei P. Oberdisse, Julian |
author_sort | Genix, Anne-Caroline |
collection | PubMed |
description | Both the dispersion state of nanoparticles (NPs) within polymer nanocomposites (PNCs) and the dynamical state of the polymer altered by the presence of the NP/polymer interfaces have a strong impact on the macroscopic properties of PNCs. In particular, mechanical properties are strongly affected by percolation of hard phases, which may be NP networks, dynamically modified polymer regions, or combinations of both. In this article, the impact on dispersion and dynamics of surface modification of the NPs by short monomethoxysilanes with eight carbons in the alkyl part (C(8)) is studied. As a function of grafting density and particle content, polymer dynamics is followed by broadband dielectric spectroscopy and analyzed by an interfacial layer model, whereas the particle dispersion is investigated by small-angle X-ray scattering and analyzed by reverse Monte Carlo simulations. NP dispersions are found to be destabilized only at the highest grafting. The interfacial layer formalism allows the clear identification of the volume fraction of interfacial polymer, with its characteristic time. The strongest dynamical slow-down in the polymer is found for unmodified NPs, while grafting weakens this effect progressively. The combination of all three techniques enables a unique measurement of the true thickness of the interfacial layer, which is ca. 5 nm. Finally, the comparison between longer (C(18)) and shorter (C(8)) grafts provides unprecedented insight into the efficacy and tunability of surface modification. It is shown that C(8)-grafting allows for a more progressive tuning, which goes beyond a pure mass effect. |
format | Online Article Text |
id | pubmed-9960434 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99604342023-02-26 Influence of the Graft Length on Nanocomposite Structure and Interfacial Dynamics Genix, Anne-Caroline Bocharova, Vera Carroll, Bobby Dieudonné-George, Philippe Chauveau, Edouard Sokolov, Alexei P. Oberdisse, Julian Nanomaterials (Basel) Article Both the dispersion state of nanoparticles (NPs) within polymer nanocomposites (PNCs) and the dynamical state of the polymer altered by the presence of the NP/polymer interfaces have a strong impact on the macroscopic properties of PNCs. In particular, mechanical properties are strongly affected by percolation of hard phases, which may be NP networks, dynamically modified polymer regions, or combinations of both. In this article, the impact on dispersion and dynamics of surface modification of the NPs by short monomethoxysilanes with eight carbons in the alkyl part (C(8)) is studied. As a function of grafting density and particle content, polymer dynamics is followed by broadband dielectric spectroscopy and analyzed by an interfacial layer model, whereas the particle dispersion is investigated by small-angle X-ray scattering and analyzed by reverse Monte Carlo simulations. NP dispersions are found to be destabilized only at the highest grafting. The interfacial layer formalism allows the clear identification of the volume fraction of interfacial polymer, with its characteristic time. The strongest dynamical slow-down in the polymer is found for unmodified NPs, while grafting weakens this effect progressively. The combination of all three techniques enables a unique measurement of the true thickness of the interfacial layer, which is ca. 5 nm. Finally, the comparison between longer (C(18)) and shorter (C(8)) grafts provides unprecedented insight into the efficacy and tunability of surface modification. It is shown that C(8)-grafting allows for a more progressive tuning, which goes beyond a pure mass effect. MDPI 2023-02-16 /pmc/articles/PMC9960434/ /pubmed/36839117 http://dx.doi.org/10.3390/nano13040748 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Genix, Anne-Caroline Bocharova, Vera Carroll, Bobby Dieudonné-George, Philippe Chauveau, Edouard Sokolov, Alexei P. Oberdisse, Julian Influence of the Graft Length on Nanocomposite Structure and Interfacial Dynamics |
title | Influence of the Graft Length on Nanocomposite Structure and Interfacial Dynamics |
title_full | Influence of the Graft Length on Nanocomposite Structure and Interfacial Dynamics |
title_fullStr | Influence of the Graft Length on Nanocomposite Structure and Interfacial Dynamics |
title_full_unstemmed | Influence of the Graft Length on Nanocomposite Structure and Interfacial Dynamics |
title_short | Influence of the Graft Length on Nanocomposite Structure and Interfacial Dynamics |
title_sort | influence of the graft length on nanocomposite structure and interfacial dynamics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960434/ https://www.ncbi.nlm.nih.gov/pubmed/36839117 http://dx.doi.org/10.3390/nano13040748 |
work_keys_str_mv | AT genixannecaroline influenceofthegraftlengthonnanocompositestructureandinterfacialdynamics AT bocharovavera influenceofthegraftlengthonnanocompositestructureandinterfacialdynamics AT carrollbobby influenceofthegraftlengthonnanocompositestructureandinterfacialdynamics AT dieudonnegeorgephilippe influenceofthegraftlengthonnanocompositestructureandinterfacialdynamics AT chauveauedouard influenceofthegraftlengthonnanocompositestructureandinterfacialdynamics AT sokolovalexeip influenceofthegraftlengthonnanocompositestructureandinterfacialdynamics AT oberdissejulian influenceofthegraftlengthonnanocompositestructureandinterfacialdynamics |