Cargando…
Unsupervised Hyperspectral Band Selection via Multimodal Evolutionary Algorithm and Subspace Decomposition
Unsupervised band selection is an essential task to search for representative bands in hyperspectral dimension reduction. Most of existing studies utilize the inherent attribute of hyperspectral image (HSI) and acquire single optimal band subset while ignoring the diversity of subsets. Moreover, the...
Autores principales: | Wei, Yunpeng, Hu, Huiqiang, Xu, Huaxing, Mao, Xiaobo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960512/ https://www.ncbi.nlm.nih.gov/pubmed/36850727 http://dx.doi.org/10.3390/s23042129 |
Ejemplares similares
-
The Identification of Fritillaria Species Using Hyperspectral Imaging with Enhanced One-Dimensional Convolutional Neural Networks via Attention Mechanism
por: Hu, Huiqiang, et al.
Publicado: (2023) -
Non-destructive prediction of isoflavone and starch by hyperspectral imaging and deep learning in Puerariae Thomsonii Radix
por: Hu, Huiqiang, et al.
Publicado: (2023) -
Identification of Turtle-Shell Growth Year Using Hyperspectral Imaging Combined with an Enhanced Spatial–Spectral Attention 3DCNN and a Transformer
por: Wang, Tingting, et al.
Publicado: (2023) -
Multimodal subspace independent vector analysis captures latent subspace structures in large multimodal neuroimaging studies
por: Li, Xinhui, et al.
Publicado: (2023) -
Extended Averaged Learning Subspace Method for Hyperspectral Data Classification
por: Bagan, Hasi, et al.
Publicado: (2009)