Cargando…
A Reinforcement Learning Handover Parameter Adaptation Method Based on LSTM-Aided Digital Twin for UDN
Adaptation of handover parameters in ultra-dense networks has always been one of the key issues in optimizing network performance. Aiming at the optimization goal of effective handover ratio, this paper proposes a deep Q-learning (DQN) method that dynamically selects handover parameters according to...
Autores principales: | He, Jiao, Xiang, Tianqi, Wang, Yixin, Ruan, Huiyuan, Zhang, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960529/ https://www.ncbi.nlm.nih.gov/pubmed/36850792 http://dx.doi.org/10.3390/s23042191 |
Ejemplares similares
-
Multi-Location-Aware Joint Optimization of Content Caching and Delivery for Backhaul-Constrained UDN
por: Jing, Wenpeng, et al.
Publicado: (2019) -
Proactive Handover Decision for UAVs with Deep Reinforcement Learning
por: Jang, Younghoon, et al.
Publicado: (2022) -
Digital twins based on bidirectional LSTM and GAN for modelling the COVID-19 pandemic
por: Quilodrán-Casas, César, et al.
Publicado: (2022) -
Heavy Metals and the Occurrence of Ulcerative Dermal Necrosis (UDN) in Sea Trout from the RIVER REGA, Poland—Consumer Health Assessment
por: Rajkowska-Myśliwiec, Monika, et al.
Publicado: (2022) -
Could mycotoxigenic Fusarium sp. play a role in ulcerative dermal necrosis (UDN) of brown trout (Salmo trutta morpha trutta)?
por: Pękala-Safińska, Agnieszka, et al.
Publicado: (2020)