Cargando…
A Control Method Based on a Simple Dynamic Optimizer: An Application to Micromachines with Friction
In Micromachines, like any mechanical system, friction compensation is an important topic for control design application. In real applications, a nonlinear control scheme has proven to be an efficient method to mitigate the effects of friction. Therefore, a new regulation control method based on a s...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960542/ https://www.ncbi.nlm.nih.gov/pubmed/36838087 http://dx.doi.org/10.3390/mi14020387 |
Sumario: | In Micromachines, like any mechanical system, friction compensation is an important topic for control design application. In real applications, a nonlinear control scheme has proven to be an efficient method to mitigate the effects of friction. Therefore, a new regulation control method based on a simple dynamic optimizer is proposed. The used optimizer has a finite-time convergence to the optimal value of a given performance index. This dynamic process is then modified to produce a new control scheme to resolve the regulation control statement. A stability test is also provided along with numerical simulations to support our approach. We used the Lyapunov theory to confirm the stability, in finite-time, of the obtained closed-loop system. Furthermore, we tested this controller in a scenario where the reference signal was a time-varying function applied to a micromachine with friction. Numerical experiments showed acceptable performance in mitigating the effects of friction in the mechanism. In the simulations, the well-known LuGre friction model was invoked. |
---|