Cargando…
The Role of Drying Schedule and Conditioning in Moisture Uniformity in Wood: A Machine Learning Approach
Monitoring the moisture content (MC) of wood and avoiding large MC variation is a crucial task as a large moisture spread after drying significantly devalues the product, especially in species with high green MC spread. Therefore, this research aims to optimize kiln-drying and provides a predictive...
Autores principales: | Rahimi, Sohrab, Nasir, Vahid, Avramidis, Stavros, Sassani, Farrokh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960566/ https://www.ncbi.nlm.nih.gov/pubmed/36850076 http://dx.doi.org/10.3390/polym15040792 |
Ejemplares similares
-
Quality Control of Thermally Modified Western Hemlock Wood Using Near-Infrared Spectroscopy and Explainable Machine Learning
por: Nasir, Vahid, et al.
Publicado: (2023) -
Prediction of Mechanical Properties of Artificially Weathered Wood by Color Change and Machine Learning
por: Nasir, Vahid, et al.
Publicado: (2021) -
Effect of blanching and ultrasound pretreatment on moisture migration, uniformity, and quality attributes of dried cantaloupe
por: Yuan, Tiejian, et al.
Publicado: (2023) -
The Characteristics of Moisture and Shrinkage of Eucalyptus urophylla × E. Grandis Wood during Conventional Drying
por: Yang, Lin, et al.
Publicado: (2022) -
Wood Moisture-Content Measurement Accuracy of Impregnated and Nonimpregnated Wood
por: Barański, Jacek, et al.
Publicado: (2021)