Cargando…
Unsupervised Learning of Disentangled Representation via Auto-Encoding: A Survey
In recent years, the rapid development of deep learning approaches has paved the way to explore the underlying factors that explain the data. In particular, several methods have been proposed to learn to identify and disentangle these underlying explanatory factors in order to improve the learning p...
Autores principales: | Eddahmani, Ikram, Pham, Chi-Hieu, Napoléon, Thibault, Badoc, Isabelle, Fouefack, Jean-Rassaire, El-Bouz, Marwa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960632/ https://www.ncbi.nlm.nih.gov/pubmed/36850960 http://dx.doi.org/10.3390/s23042362 |
Ejemplares similares
-
Unsupervised MR harmonization by learning disentangled representations using information bottleneck theory
por: Zuo, Lianrui, et al.
Publicado: (2021) -
Unsupervised Phonocardiogram Analysis With Distribution Density Based Variational Auto-Encoders
por: Li, Shengchen, et al.
Publicado: (2021) -
A Lightweight Unsupervised Intrusion Detection Model Based on Variational Auto-Encoder
por: Ren, Yi, et al.
Publicado: (2023) -
An Unsupervised Tunnel Damage Identification Method Based on Convolutional Variational Auto-Encoder and Wavelet Packet Analysis
por: Zhang, Yonglai, et al.
Publicado: (2022) -
Auto-encoded Latent Representations of White Matter Streamlines for Quantitative Distance Analysis
por: Zhong, Shenjun, et al.
Publicado: (2022)