Cargando…
Development of a Soil Moisture Prediction Model Based on Recurrent Neural Network Long Short-Term Memory (RNN-LSTM) in Soybean Cultivation
Due to climate change, soil moisture may increase, and outflows could become more frequent, which will have a considerable impact on crop growth. Crops are affected by soil moisture; thus, soil moisture prediction is necessary for irrigating at an appropriate time according to weather changes. There...
Autores principales: | Park, Soo-Hwan, Lee, Bo-Young, Kim, Min-Jee, Sang, Wangyu, Seo, Myung Chul, Baek, Jae-Kyeong, Yang, Jae E, Mo, Changyeun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960646/ https://www.ncbi.nlm.nih.gov/pubmed/36850574 http://dx.doi.org/10.3390/s23041976 |
Ejemplares similares
-
RNN- and LSTM-Based Soft Sensors Transferability for an Industrial Process
por: Curreri, Francesco, et al.
Publicado: (2021) -
Groundwater quality prediction based on LSTM RNN: An Iranian experience
por: Valadkhan, D., et al.
Publicado: (2022) -
Audio-Visual Stress Classification Using Cascaded RNN-LSTM Networks
por: Gupta, Megha V., et al.
Publicado: (2022) -
Splice-site identification for exon prediction using bidirectional LSTM-RNN approach
por: Singh, Noopur, et al.
Publicado: (2022) -
A MEMS IMU De-Noising Method Using Long Short Term Memory Recurrent Neural Networks (LSTM-RNN)
por: Jiang, Changhui, et al.
Publicado: (2018)