Cargando…
DEHA-Net: A Dual-Encoder-Based Hard Attention Network with an Adaptive ROI Mechanism for Lung Nodule Segmentation
Measuring pulmonary nodules accurately can help the early diagnosis of lung cancer, which can increase the survival rate among patients. Numerous techniques for lung nodule segmentation have been developed; however, most of them either rely on the 3D volumetric region of interest (VOI) input by radi...
Autores principales: | Usman, Muhammad, Shin, Yeong-Gil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960760/ https://www.ncbi.nlm.nih.gov/pubmed/36850583 http://dx.doi.org/10.3390/s23041989 |
Ejemplares similares
-
Volumetric lung nodule segmentation using adaptive ROI with multi-view residual learning
por: Usman, Muhammad, et al.
Publicado: (2020) -
Intelligence quotient and concept of Deha-Mānasa Prakṛti in Ayurveda
por: Nandvadekar, Vijaykumar, et al.
Publicado: (2016) -
Local and Context-Attention Adaptive LCA-Net for Thyroid Nodule Segmentation in Ultrasound Images
por: Tao, Zhen, et al.
Publicado: (2022) -
CONCEPT OF DEHA PRAKRITI VIS-À-VIS HUMAN CONSTITUTION IN AYURVEDA
por: Tripathi, J.S., et al.
Publicado: (1994) -
Semantic segmentation of gonio-photographs via adaptive ROI localisation and uncertainty estimation
por: Peroni, Andrea, et al.
Publicado: (2021)