Cargando…

Proteomic Analysis of Mucosal and Systemic Responses to SARS-CoV-2 Antigen

The mucosal environment of the upper respiratory tract is the first barrier of protection against SARS-CoV-2 transmission. However, the mucosal factors involved in viral transmission and potentially modulating the capacity to prevent such transmission have not fully been identified. In this pilot pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Martinson, Neil, Gordhan, Bhavna, Petkov, Stefan, Pillay, Azure-Dee, Seiphetlo, Thabiso, Singh, Natasha, Otwombe, Kennedy, Lebina, Limakatso, Fredolini, Claudia, Chiodi, Francesca, Fox, Julie, Kana, Bavesh, Herrera, Carolina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960779/
https://www.ncbi.nlm.nih.gov/pubmed/36851212
http://dx.doi.org/10.3390/vaccines11020334
Descripción
Sumario:The mucosal environment of the upper respiratory tract is the first barrier of protection against SARS-CoV-2 transmission. However, the mucosal factors involved in viral transmission and potentially modulating the capacity to prevent such transmission have not fully been identified. In this pilot proteomics study, we compared mucosal and systemic compartments in a South African cohort of vaccinated and unvaccinated individuals undergoing maxillofacial surgery with previous history of COVID-19 or not. Inflammatory profiles were analyzed in plasma, nasopharyngeal swabs, and nasal and oral tissue explant cultures, using Olink and Luminex technologies. SARS-CoV-2-specific antibody levels were measured in serum and tissue explants. An increased pro-inflammatory proteomic profile was measured in the nasal compartment compared to plasma. However, IP-10 and MIG levels were higher in secretions than in nasal tissue, and the opposite was observed for TGF-β. Nasal anti-SARS-CoV-2 spike IgG correlated with mucosal MIG expression for all participants. A further positive correlation was found with IP-10 in BioNTech/Pfizer-vaccinated individuals. Systemic levels of anti-SARS-CoV-2 spike IgG elicited by this vaccine correlated with plasma IL-10, IL-6 and HBD4. Proteomic profiles measured in mucosal tissues and secretions using combined technologies could reveal correlates of protection at the mucosal portals of viral entry.