Cargando…
GATR: A Road Network Traffic Violation Prediction Method Based on Graph Attention Network
Prediction of traffic violations plays a key role in transportation safety. Combining with deep learning to predict traffic violations has become a new development trend. However, existing methods are based on regular spatial grids which leads to a fuzzy spatial expression and ignores the strong cor...
Autores principales: | Zhou, Yuquan, Wang, Yingzhi, Zhang, Feng, Zhou, Hongye, Sun, Keran, Yu, Yuhan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960800/ https://www.ncbi.nlm.nih.gov/pubmed/36834124 http://dx.doi.org/10.3390/ijerph20043432 |
Ejemplares similares
-
Road traffic flow prediction based on dynamic spatiotemporal graph attention network
por: Chen, Yuguang, et al.
Publicado: (2023) -
Multi-Head Spatiotemporal Attention Graph Convolutional Network for Traffic Prediction
por: Oluwasanmi, Ariyo, et al.
Publicado: (2023) -
Spatio-temporal causal graph attention network for traffic flow prediction in intelligent transportation systems
por: Zhao, Wei, et al.
Publicado: (2023) -
Multicomponent Spatial-Temporal Graph Attention Convolution Networks for Traffic Prediction with Spatially Sparse Data
por: Liu, Shaohua, et al.
Publicado: (2021) -
Graph Convolutional Network: Traffic Speed Prediction Fused with Traffic Flow Data
por: Liu, Duanyang, et al.
Publicado: (2021)