Cargando…
Impact of Wavelet Kernels on Predictive Capability of Radiomic Features: A Case Study on COVID-19 Chest X-ray Images
Radiomic analysis allows for the detection of imaging biomarkers supporting decision-making processes in clinical environments, from diagnosis to prognosis. Frequently, the original set of radiomic features is augmented by considering high-level features, such as wavelet transforms. However, several...
Autores principales: | Prinzi, Francesco, Militello, Carmelo, Conti, Vincenzo, Vitabile, Salvatore |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9961017/ https://www.ncbi.nlm.nih.gov/pubmed/36826951 http://dx.doi.org/10.3390/jimaging9020032 |
Ejemplares similares
-
Transformer-Based Approach to Melanoma Detection
por: Cirrincione, Giansalvo, et al.
Publicado: (2023) -
Wavelet Frequency Separation Attention Network for Chest X-ray Image Super-Resolution
por: Yu, Yue, et al.
Publicado: (2021) -
Study on transfer learning capabilities for pneumonia classification in chest-x-rays images
por: Avola, Danilo, et al.
Publicado: (2022) -
Machine Learning Model Based on Radiomic Features for Differentiation between COVID-19 and Pneumonia on Chest X-ray
por: Kim, Young Jae
Publicado: (2022) -
Explainable Vision Transformers and Radiomics for COVID-19 Detection in Chest X-rays
por: Chetoui, Mohamed, et al.
Publicado: (2022)