Cargando…

Influence of Vitamin D Status and Supplementation on Metabolomic Profiles of Older Adults

Metabolomics can identify metabolite patterns associated with different nutrition phenotypes and determine changes in metabolism in response to nutrition interventions. Vitamin D insufficiency is associated with increased metabolic disease risk; however, the role of vitamin D in metabolic health is...

Descripción completa

Detalles Bibliográficos
Autores principales: McCourt, Aislinn F., O’Sullivan, Aifric M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9961282/
https://www.ncbi.nlm.nih.gov/pubmed/36837785
http://dx.doi.org/10.3390/metabo13020166
Descripción
Sumario:Metabolomics can identify metabolite patterns associated with different nutrition phenotypes and determine changes in metabolism in response to nutrition interventions. Vitamin D insufficiency is associated with increased metabolic disease risk; however, the role of vitamin D in metabolic health is not fully understood. This randomised, placebo-controlled trial (RCT) examined the influence of vitamin D status and the effect of vitamin D supplementation on metabolomic profiles in older adults. Healthy adults aged 50+ were randomly assigned to consume 20 µg vitamin D3 or a placebo daily for 4 weeks. Serum samples were collected at baseline and post-intervention for 25(OH)D and metabolomics analysis via liquid chromatography tandem mass spectrometry (LC-MS/MS). Pearson’s correlation examined relationships between 25(OH)D and metabolite concentrations. GLM ANCOVA compared metabolite concentrations between vitamin D-insufficient (<50 nmol/L) and -sufficient (>50 nmol/L) participants. The repeated-measures general linear model of covariance (RM GLM ANCOVA) examined changes in metabolites over time. Out of 132 metabolites, 2 short chain fatty acid concentrations were higher in the insufficient participants compared to sufficient participants, and 11 glycerophospholipid concentrations were lower in insufficient participants compared to sufficient participants at baseline. Three acylcarnitine concentrations decreased with vitamin D supplementation in vitamin D-insufficient participants. Our findings suggest that vitamin D status influences lipid metabolism in healthy older adults and supports the use of metabolomics in vitamin D research.