Cargando…
Uncertainty quantification in mechanistic epidemic models via cross-entropy approximate Bayesian computation
This paper proposes a data-driven approximate Bayesian computation framework for parameter estimation and uncertainty quantification of epidemic models, which incorporates two novelties: (i) the identification of the initial conditions by using plausible dynamic states that are compatible with obser...
Autores principales: | Cunha Jr, Americo, Barton, David A. W., Ritto, Thiago G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9961307/ https://www.ncbi.nlm.nih.gov/pubmed/37025428 http://dx.doi.org/10.1007/s11071-023-08327-8 |
Ejemplares similares
-
Approximate Bayesian inference in semi-mechanistic models
por: Aderhold, Andrej, et al.
Publicado: (2016) -
Cophylogeny Reconstruction via an Approximate Bayesian Computation
por: Baudet, C., et al.
Publicado: (2015) -
Approximate Bayesian Computation
por: Sunnåker, Mikael, et al.
Publicado: (2013) -
Daily Forecasting of Regional Epidemics of Coronavirus Disease with Bayesian Uncertainty Quantification, United States
por: Lin, Yen Ting, et al.
Publicado: (2021) -
Sequential time-window learning with approximate Bayesian computation: an application to epidemic forecasting
por: Valeriano, João Pedro, et al.
Publicado: (2022)