Cargando…
Prediction of Blood Risk Score in Diabetes Using Deep Neural Networks
Improving the prediction of blood glucose concentration may improve the quality of life of people living with type 1 diabetes by enabling them to better manage their care. Given the anticipated benefits of such a prediction, numerous methods have been proposed. Rather than attempting to predict gluc...
Autores principales: | Toledo-Marín, J. Quetzalcóatl, Ali, Taqdir, van Rooij, Tibor, Görges, Matthias, Wasserman, Wyeth W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9961355/ https://www.ncbi.nlm.nih.gov/pubmed/36836230 http://dx.doi.org/10.3390/jcm12041695 |
Ejemplares similares
-
Using deep LSD to build operators in GANs latent space with meaning in real space
por: Toledo-Marín, J. Quetzalcóatl, et al.
Publicado: (2023) -
Designing a Collaborative Patient-Centered Digital Health Platform for Pediatric Diabetes Care in British Columbia: Formative Needs Assessment by Caregivers of Children and Youths Living With Type 1 Diabetes and Health Care Providers
por: Abdulhussein, Fatema S, et al.
Publicado: (2023) -
ExplaiNN: interpretable and transparent neural networks for genomics
por: Novakovsky, Gherman, et al.
Publicado: (2023) -
Genome-wide prediction of cis-regulatory regions using supervised deep learning methods
por: Li, Yifeng, et al.
Publicado: (2018) -
Deep Learning Approaches to Surrogates for Solving the Diffusion Equation for Mechanistic Real-World Simulations
por: Toledo-Marín, J. Quetzalcóatl, et al.
Publicado: (2021)