Cargando…
Classification of Motor Imagery EEG Signals Based on Data Augmentation and Convolutional Neural Networks
In brain–computer interface (BCI) systems, motor imagery electroencephalography (MI-EEG) signals are commonly used to detect participant intent. Many factors, including low signal-to-noise ratios and few high-quality samples, make MI classification difficult. In order for BCI systems to function, MI...
Autores principales: | Xie, Yu, Oniga, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9961359/ https://www.ncbi.nlm.nih.gov/pubmed/36850530 http://dx.doi.org/10.3390/s23041932 |
Ejemplares similares
-
Motor Imagery EEG Signal Recognition Using Deep Convolution Neural Network
por: Xiao, Xiongliang, et al.
Publicado: (2021) -
Data Augmentation for Motor Imagery Signal Classification Based on a Hybrid Neural Network
por: Zhang, Kai, et al.
Publicado: (2020) -
A Parallel Multiscale Filter Bank Convolutional Neural Networks for Motor Imagery EEG Classification
por: Wu, Hao, et al.
Publicado: (2019) -
Spatial-Frequency Feature Learning and Classification of Motor Imagery EEG Based on Deep Convolution Neural Network
por: Miao, Minmin, et al.
Publicado: (2020) -
A Multi-Branch Convolutional Neural Network with Squeeze-and-Excitation Attention Blocks for EEG-Based Motor Imagery Signals Classification
por: Altuwaijri, Ghadir Ali, et al.
Publicado: (2022)