Cargando…
A Bayesian Network Approach to Explainable Reinforcement Learning with Distal Information
Nowadays, Artificial Intelligence systems have expanded their competence field from research to industry and daily life, so understanding how they make decisions is becoming fundamental to reducing the lack of trust between users and machines and increasing the transparency of the model. This paper...
Autores principales: | Milani, Rudy, Moll, Maximilian, De Leone, Renato, Pickl, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9961455/ https://www.ncbi.nlm.nih.gov/pubmed/36850617 http://dx.doi.org/10.3390/s23042013 |
Ejemplares similares
-
Benchmarking for Bayesian Reinforcement Learning
por: Castronovo, Michael, et al.
Publicado: (2016) -
Reinforcement learning and Bayesian data assimilation for model‐informed precision dosing in oncology
por: Maier, Corinna, et al.
Publicado: (2021) -
Bayesian reinforcement learning: a survey
por: Ghavamzadeh, Mohammed, et al.
Publicado: (2015) -
Explainable AI and Reinforcement Learning—A Systematic Review of Current Approaches and Trends
por: Wells, Lindsay, et al.
Publicado: (2021) -
Efficient Reinforcement Learning from Demonstration via Bayesian Network-Based Knowledge Extraction
por: Zhang, Yichuan, et al.
Publicado: (2021)