Cargando…
Development of PPARγ Agonists for the Treatment of Neuroinflammatory and Neurodegenerative Diseases: Leriglitazone as a Promising Candidate
Increasing evidence suggests that the peroxisome proliferator-activated receptor γ (PPARγ), a member of the nuclear receptor superfamily, plays an important role in physiological processes in the central nervous system (CNS) and is involved in cellular metabolism and repair. Cellular damage caused b...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9961553/ https://www.ncbi.nlm.nih.gov/pubmed/36834611 http://dx.doi.org/10.3390/ijms24043201 |
_version_ | 1784895783185678336 |
---|---|
author | Pizcueta, Pilar Vergara, Cristina Emanuele, Marco Vilalta, Anna Rodríguez-Pascau, Laura Martinell, Marc |
author_facet | Pizcueta, Pilar Vergara, Cristina Emanuele, Marco Vilalta, Anna Rodríguez-Pascau, Laura Martinell, Marc |
author_sort | Pizcueta, Pilar |
collection | PubMed |
description | Increasing evidence suggests that the peroxisome proliferator-activated receptor γ (PPARγ), a member of the nuclear receptor superfamily, plays an important role in physiological processes in the central nervous system (CNS) and is involved in cellular metabolism and repair. Cellular damage caused by acute brain injury and long-term neurodegenerative disorders is associated with alterations of these metabolic processes leading to mitochondrial dysfunction, oxidative stress, and neuroinflammation. PPARγ agonists have demonstrated the potential to be effective treatments for CNS diseases in preclinical models, but to date, most drugs have failed to show efficacy in clinical trials of neurodegenerative diseases including amyotrophic lateral sclerosis, Parkinson’s disease, and Alzheimer’s disease. The most likely explanation for this lack of efficacy is the insufficient brain exposure of these PPARγ agonists. Leriglitazone is a novel, blood–brain barrier (BBB)-penetrant PPARγ agonist that is being developed to treat CNS diseases. Here, we review the main roles of PPARγ in physiology and pathophysiology in the CNS, describe the mechanism of action of PPARγ agonists, and discuss the evidence supporting the use of leriglitazone to treat CNS diseases. |
format | Online Article Text |
id | pubmed-9961553 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99615532023-02-26 Development of PPARγ Agonists for the Treatment of Neuroinflammatory and Neurodegenerative Diseases: Leriglitazone as a Promising Candidate Pizcueta, Pilar Vergara, Cristina Emanuele, Marco Vilalta, Anna Rodríguez-Pascau, Laura Martinell, Marc Int J Mol Sci Review Increasing evidence suggests that the peroxisome proliferator-activated receptor γ (PPARγ), a member of the nuclear receptor superfamily, plays an important role in physiological processes in the central nervous system (CNS) and is involved in cellular metabolism and repair. Cellular damage caused by acute brain injury and long-term neurodegenerative disorders is associated with alterations of these metabolic processes leading to mitochondrial dysfunction, oxidative stress, and neuroinflammation. PPARγ agonists have demonstrated the potential to be effective treatments for CNS diseases in preclinical models, but to date, most drugs have failed to show efficacy in clinical trials of neurodegenerative diseases including amyotrophic lateral sclerosis, Parkinson’s disease, and Alzheimer’s disease. The most likely explanation for this lack of efficacy is the insufficient brain exposure of these PPARγ agonists. Leriglitazone is a novel, blood–brain barrier (BBB)-penetrant PPARγ agonist that is being developed to treat CNS diseases. Here, we review the main roles of PPARγ in physiology and pathophysiology in the CNS, describe the mechanism of action of PPARγ agonists, and discuss the evidence supporting the use of leriglitazone to treat CNS diseases. MDPI 2023-02-06 /pmc/articles/PMC9961553/ /pubmed/36834611 http://dx.doi.org/10.3390/ijms24043201 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Pizcueta, Pilar Vergara, Cristina Emanuele, Marco Vilalta, Anna Rodríguez-Pascau, Laura Martinell, Marc Development of PPARγ Agonists for the Treatment of Neuroinflammatory and Neurodegenerative Diseases: Leriglitazone as a Promising Candidate |
title | Development of PPARγ Agonists for the Treatment of Neuroinflammatory and Neurodegenerative Diseases: Leriglitazone as a Promising Candidate |
title_full | Development of PPARγ Agonists for the Treatment of Neuroinflammatory and Neurodegenerative Diseases: Leriglitazone as a Promising Candidate |
title_fullStr | Development of PPARγ Agonists for the Treatment of Neuroinflammatory and Neurodegenerative Diseases: Leriglitazone as a Promising Candidate |
title_full_unstemmed | Development of PPARγ Agonists for the Treatment of Neuroinflammatory and Neurodegenerative Diseases: Leriglitazone as a Promising Candidate |
title_short | Development of PPARγ Agonists for the Treatment of Neuroinflammatory and Neurodegenerative Diseases: Leriglitazone as a Promising Candidate |
title_sort | development of pparγ agonists for the treatment of neuroinflammatory and neurodegenerative diseases: leriglitazone as a promising candidate |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9961553/ https://www.ncbi.nlm.nih.gov/pubmed/36834611 http://dx.doi.org/10.3390/ijms24043201 |
work_keys_str_mv | AT pizcuetapilar developmentofppargagonistsforthetreatmentofneuroinflammatoryandneurodegenerativediseasesleriglitazoneasapromisingcandidate AT vergaracristina developmentofppargagonistsforthetreatmentofneuroinflammatoryandneurodegenerativediseasesleriglitazoneasapromisingcandidate AT emanuelemarco developmentofppargagonistsforthetreatmentofneuroinflammatoryandneurodegenerativediseasesleriglitazoneasapromisingcandidate AT vilaltaanna developmentofppargagonistsforthetreatmentofneuroinflammatoryandneurodegenerativediseasesleriglitazoneasapromisingcandidate AT rodriguezpascaulaura developmentofppargagonistsforthetreatmentofneuroinflammatoryandneurodegenerativediseasesleriglitazoneasapromisingcandidate AT martinellmarc developmentofppargagonistsforthetreatmentofneuroinflammatoryandneurodegenerativediseasesleriglitazoneasapromisingcandidate |