Cargando…
Integrating Sparse Learning-Based Feature Detectors into Simultaneous Localization and Mapping—A Benchmark Study
Simultaneous localization and mapping (SLAM) is one of the cornerstones of autonomous navigation systems in robotics and the automotive industry. Visual SLAM (V-SLAM), which relies on image features, such as keypoints and descriptors to estimate the pose transformation between consecutive frames, is...
Autores principales: | Mollica, Giuseppe, Legittimo, Marco, Dionigi, Alberto, Costante, Gabriele, Valigi, Paolo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9961729/ https://www.ncbi.nlm.nih.gov/pubmed/36850884 http://dx.doi.org/10.3390/s23042286 |
Ejemplares similares
-
Simultaneous Localization and Mapping with Iterative Sparse Extended Information Filter for Autonomous Vehicles
por: He, Bo, et al.
Publicado: (2015) -
Data-Driven Fault Diagnosis Techniques: Non-Linear Directional Residual vs. Machine-Learning-Based Methods
por: Cartocci, Nicholas, et al.
Publicado: (2022) -
Simultaneous Channel and Feature Selection of Fused EEG Features Based on Sparse Group Lasso
por: Wang, Jin-Jia, et al.
Publicado: (2015) -
A flexible framework for sparse simultaneous component based data integration
por: Van Deun, Katrijn, et al.
Publicado: (2011) -
SLAM-OR: Simultaneous Localization, Mapping and Object Recognition Using Video Sensors Data in Open Environments from the Sparse Points Cloud
por: Mazurek, Patryk, et al.
Publicado: (2021)