Cargando…

Dewetting-Induced Hierarchical Self-Assembly of Block Copolymers Templated by Colloidal Crystals

Recent advances in high-performance flexible electronic devices have increased the demand for more diverse and complex nanofabrication methods; high-resolution, high-efficiency, and low-cost patterning strategies for next-generation devices are therefore required. In this study, we demonstrate the f...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Dong Hwan, Kwon, Hong Gu, Choi, Hong Kyoon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9961777/
https://www.ncbi.nlm.nih.gov/pubmed/36850181
http://dx.doi.org/10.3390/polym15040897
Descripción
Sumario:Recent advances in high-performance flexible electronic devices have increased the demand for more diverse and complex nanofabrication methods; high-resolution, high-efficiency, and low-cost patterning strategies for next-generation devices are therefore required. In this study, we demonstrate the formation of dewetting-induced hierarchical patterns using two self-assembled materials: block copolymers (BCPs) and colloidal crystals. The combination of the two self-assembly methods successfully generates multiscale hierarchical patterns because the length scales of the periodic colloidal crystal structures are suitable for templating the BCP patterns. Various concentric ring patterns were observed on the templated BCP films, and a free energy model of the polymer chain was applied to explain the formation of these patterns relative to the template width. Frequently occurring spiral-defective features were also examined and found to be promoted by Y-junction defects.