Cargando…

Comparative Study on Laser Welding Thick-Walled TC4 Titanium Alloy with Flux-Cored Wire and Cable Wire

In the welding process of thick-walled titanium alloys, the selection of the wire type is one of the critical factors affecting the welding quality. In this paper, flux-cored and cable wires were used as filler materials in the welding of thick-walled titanium alloys. The macrostructure, microstruct...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Laibo, Wang, Mingqiu, Huang, Lujun, Fang, Naiwen, Wu, Pengbo, Huang, Ruisheng, Xu, Kai, Wang, Xingxing, Qin, Jian, Li, Shuai, Long, Weimin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9961873/
https://www.ncbi.nlm.nih.gov/pubmed/36837138
http://dx.doi.org/10.3390/ma16041509
Descripción
Sumario:In the welding process of thick-walled titanium alloys, the selection of the wire type is one of the critical factors affecting the welding quality. In this paper, flux-cored and cable wires were used as filler materials in the welding of thick-walled titanium alloys. The macrostructure, microstructure, texture, and grain size of both welded joints were compared by employing an optical microscope (OM), scanning electron microscope (SEM), and transmission electron microscope (TEM), and the tensile and impact properties were also evaluated. The comparison result showed that the fusion zone microstructure of both welded joints was dominated by a basketweave structure composed of interwoven acicular α′ martensite, whereas the microstructure of flux-cored wire welded joints was finer, and the degree of anisotropy was low. The strength of both welded joints was higher than that of the base metal, ensuring that fracture occurred in the base metal area during tension. The Charpy impact energy of the flux-cored wire welded joint was 16.7% higher than that of the cable wire welded joint, indicating that the welded joint obtained with the flux-cored wire performed better in the welding process of thick-walled titanium alloys.