Cargando…
GridHTM: Grid-Based Hierarchical Temporal Memory for Anomaly Detection in Videos
The interest in video anomaly detection systems that can detect different types of anomalies, such as violent behaviours in surveillance videos, has gained traction in recent years. The current approaches employ deep learning to perform anomaly detection in videos, but this approach has multiple pro...
Autores principales: | Monakhov, Vladimir, Thambawita, Vajira, Halvorsen, Pål, Riegler, Michael A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9961912/ https://www.ncbi.nlm.nih.gov/pubmed/36850686 http://dx.doi.org/10.3390/s23042087 |
Ejemplares similares
-
Hierarchical protection for smart grids
por: Ma, Jing, et al.
Publicado: (2018) -
Machine Learning-Based Analysis of Sperm Videos and Participant Data for Male Fertility Prediction
por: Hicks, Steven A., et al.
Publicado: (2019) -
Impact of Image Resolution on Deep Learning Performance in Endoscopy Image Classification: An Experimental Study Using a Large Dataset of Endoscopic Images
por: Thambawita, Vajira, et al.
Publicado: (2021) -
On evaluation metrics for medical applications of artificial intelligence
por: Hicks, Steven A., et al.
Publicado: (2022) -
Multistability and anomalies in oscillator models of lossy power grids
por: Delabays, Robin, et al.
Publicado: (2022)