Cargando…

A VO(2) Neuristor Based on Microstrip Line Coupling

The neuromorphic network based on artificial neurons and synapses can solve computational difficulties, and its energy efficiency is incomparable to the traditional von Neumann architecture. As a new type of circuit component, nonvolatile memristors are very similar to biological synapses in structu...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Haidan, Shen, Yiran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9961992/
https://www.ncbi.nlm.nih.gov/pubmed/36838036
http://dx.doi.org/10.3390/mi14020337
Descripción
Sumario:The neuromorphic network based on artificial neurons and synapses can solve computational difficulties, and its energy efficiency is incomparable to the traditional von Neumann architecture. As a new type of circuit component, nonvolatile memristors are very similar to biological synapses in structure and function. Only one memristor can simulate the function of a synapse. Therefore, memristors provide a new way to build hardware-based artificial neural networks. To build such an artificial neural network, in addition to the artificial synapses, artificial neurons are also needed to realize the distribution of information and the adjustment of synaptic weights. As the VO(2) volatile local active memristor is complementary to nonvolatile memristors, it can be used to simulate the function of neurons. However, determining how to better realize the function of neurons with simple circuits is one of the current key problems to be solved in this field. This paper considers the influence of distribution parameters on circuit performance under the action of high-frequency and high-speed signals. Two Mott VO(2) memristor units are connected and coupled with microstrip lines to simulate the Hodgkin–Huxley neuron model. It is found that the proposed memristor neuron based on microstrip lines shows the characteristics of neuron action potential: amplification and threshold.