Cargando…
Prediction of a Large-Scale Database of Collision Cross-Section and Retention Time Using Machine Learning to Reduce False Positive Annotations in Untargeted Metabolomics
Metabolite identification in untargeted metabolomics is complex, with the risk of false positive annotations. This work aims to use machine learning to successively predict the retention time (Rt) and the collision cross-section (CCS) of an open-access database to accelerate the interpretation of me...
Autores principales: | Lenski, Marie, Maallem, Saïd, Zarcone, Gianni, Garçon, Guillaume, Lo-Guidice, Jean-Marc, Anthérieu, Sébastien, Allorge, Delphine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962007/ https://www.ncbi.nlm.nih.gov/pubmed/36837901 http://dx.doi.org/10.3390/metabo13020282 |
Ejemplares similares
-
Impact of Electronic Cigarettes, Heated Tobacco Products and Conventional Cigarettes on the Generation of Oxidative Stress and Genetic and Epigenetic Lesions in Human Bronchial Epithelial BEAS-2B Cells
por: Zarcone, Gianni, et al.
Publicado: (2023) -
Ion mobility collision cross-section atlas for known and unknown metabolite annotation in untargeted metabolomics
por: Zhou, Zhiwei, et al.
Publicado: (2020) -
Biological Filtering and Substrate Promiscuity Prediction for Annotating Untargeted Metabolomics
por: Hassanpour, Neda, et al.
Publicado: (2020) -
Metabolite discovery through global annotation of untargeted metabolomics data
por: Chen, Li, et al.
Publicado: (2021) -
Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics
por: Shen, Xiaotao, et al.
Publicado: (2019)