Cargando…

Caloric Restriction (CR) Plus High-Nitrate Beetroot Juice Does Not Amplify CR-Induced Metabolic Adaptation and Improves Vascular and Cognitive Functions in Overweight Adults: A 14-Day Pilot Randomised Trial

Caloric restriction (CR) and dietary nitrate supplementation are nutritional interventions with pleiotropic physiological functions. This pilot study investigates the combined effects of CR and nitrate-rich beetroot juice (BRJ) on metabolic, vascular, and cognitive functions in overweight and obese...

Descripción completa

Detalles Bibliográficos
Autores principales: Alharbi, Mushari, Chiurazzi, Martina, Nasti, Gilda, Muscariello, Espedita, Mastantuono, Teresa, Koechl, Christina, Stephan, Blossom CM, Shannon, Oliver M, Colantuoni, Antonio, Siervo, Mario
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962072/
https://www.ncbi.nlm.nih.gov/pubmed/36839248
http://dx.doi.org/10.3390/nu15040890
Descripción
Sumario:Caloric restriction (CR) and dietary nitrate supplementation are nutritional interventions with pleiotropic physiological functions. This pilot study investigates the combined effects of CR and nitrate-rich beetroot juice (BRJ) on metabolic, vascular, and cognitive functions in overweight and obese middle-aged and older adults. This was a two-arm, parallel randomized clinical trial including 29 participants allocated to CR + BRJ (n = 15) or CR alone (n = 14) for 14 days. Body composition, resting energy expenditure (REE), and hand-grip strength were measured. Resting blood pressure (BP) and microvascular endothelial function were measured, and Trail-Making Test A and B were used to assess cognitive function. Salivary nitrate and nitrite, and urinary nitrate and 8-isoprostane concentrations were measured. Changes in body composition, REE, and systolic and diastolic BP were similar between the two interventions (p > 0.05). The CR + BRJ intervention produced greater changes in average microvascular flux (p = 0.03), NO-dependent endothelial activity (p = 0.02), and TMT-B cognitive scores (p = 0.012) compared to CR alone. Changes in urinary 8-isoprostane were greater in the CR + BRJ group (p = 0.02), and they were inversely associated with changes in average microvascular flux (r = −0.53, p = 0.003). These preliminary findings suggest that greater effects on vascular and cognitive functions could be achieved by combining CR with dietary nitrate supplementation.